@@ -113,7 +113,7 @@ quotient.sound ⟨equiv.ulift.trans $ e.trans equiv.ulift.symm⟩
113
113
114
114
theorem lift_mk (α) : lift.{v} (#α) = #(ulift.{v u} α) := rfl
115
115
116
- theorem lift_umax : lift.{(max u v) u} = lift.{v u} :=
116
+ @[simp] theorem lift_umax : lift.{(max u v) u} = lift.{v u} :=
117
117
funext $ λ a, quot.induction_on a $ λ α,
118
118
quotient.sound ⟨equiv.ulift.trans equiv.ulift.symm⟩
119
119
@@ -237,12 +237,26 @@ instance : has_add cardinal.{u} :=
237
237
238
238
@[simp] theorem add_def (α β : Type u) : #α + #β = #(α ⊕ β) := rfl
239
239
240
+ lemma add (α : Type u) (β : Type v) :
241
+ #(α ⊕ β) = lift.{v u} (#α) + lift.{u v} (#β) :=
242
+ begin
243
+ rw [cardinal.lift_mk, cardinal.lift_mk, add_def],
244
+ exact cardinal.eq.2 ⟨equiv.sum_congr (equiv.ulift).symm (equiv.ulift).symm⟩,
245
+ end
246
+
240
247
instance : has_mul cardinal.{u} :=
241
248
⟨λq₁ q₂, quotient.lift_on₂ q₁ q₂ (λα β, #(α × β)) $ assume α β γ δ ⟨e₁⟩ ⟨e₂⟩,
242
249
quotient.sound ⟨equiv.prod_congr e₁ e₂⟩⟩
243
250
244
251
@[simp] theorem mul_def (α β : Type u) : #α * #β = #(α × β) := rfl
245
252
253
+ lemma mul (α : Type u) (β : Type v) :
254
+ #(α × β) = lift.{v u} (#α) * lift.{u v} (#β) :=
255
+ begin
256
+ rw [cardinal.lift_mk, cardinal.lift_mk, mul_def],
257
+ exact cardinal.eq.2 ⟨equiv.prod_congr (equiv.ulift).symm (equiv.ulift).symm⟩,
258
+ end
259
+
246
260
private theorem add_comm (a b : cardinal.{u}) : a + b = b + a :=
247
261
quotient.induction_on₂ a b $ assume α β, quotient.sound ⟨equiv.sum_comm α β⟩
248
262
@@ -520,8 +534,8 @@ quot.sound ⟨equiv.sigma_congr_right $ λ i,
520
534
classical.choice $ quotient.exact $ quot.out_eq $ #(f i)⟩
521
535
522
536
theorem sum_const (ι : Type u) (a : cardinal.{u}) : sum (λ _:ι, a) = #ι * a :=
523
- quotient.induction_on a $ λ α, by simp; exact
524
- quotient.sound ⟨equiv.sigma_equiv_prod _ _⟩
537
+ quotient.induction_on a $ λ α, by { simp only [mul_def, sum_mk, mk_def], exact
538
+ quotient.sound ⟨equiv.sigma_equiv_prod _ _⟩ }
525
539
526
540
theorem sum_le_sum {ι} (f g : ι → cardinal) (H : ∀ i, f i ≤ g i) : sum f ≤ sum g :=
527
541
⟨(embedding.refl _).sigma_map $ λ i, classical.choice $
0 commit comments