This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +20
-0
lines changed Expand file tree Collapse file tree 1 file changed +20
-0
lines changed Original file line number Diff line number Diff line change @@ -141,6 +141,16 @@ instance [monoid α] : monoid (set α) :=
141
141
{ ..set.semigroup,
142
142
..set.mul_one_class }
143
143
144
+ lemma pow_mem_pow [monoid α] (ha : a ∈ s) (n : ℕ) :
145
+ a ^ n ∈ s ^ n :=
146
+ begin
147
+ induction n with n ih,
148
+ { rw pow_zero,
149
+ exact set.mem_singleton 1 },
150
+ { rw pow_succ,
151
+ exact set.mul_mem_mul ha ih },
152
+ end
153
+
144
154
@[to_additive]
145
155
protected lemma mul_comm [comm_semigroup α] : s * t = t * s :=
146
156
by simp only [← image2_mul, image2_swap _ s, mul_comm]
@@ -163,6 +173,16 @@ lemma mul_empty [has_mul α] : s * ∅ = ∅ := image2_empty_right
163
173
lemma mul_subset_mul [has_mul α] (h₁ : s₁ ⊆ t₁) (h₂ : s₂ ⊆ t₂) : s₁ * s₂ ⊆ t₁ * t₂ :=
164
174
image2_subset h₁ h₂
165
175
176
+ lemma pow_subset_pow [monoid α] (hst : s ⊆ t) (n : ℕ) :
177
+ s ^ n ⊆ t ^ n :=
178
+ begin
179
+ induction n with n ih,
180
+ { rw pow_zero,
181
+ exact subset.rfl },
182
+ { rw [pow_succ, pow_succ],
183
+ exact mul_subset_mul hst ih },
184
+ end
185
+
166
186
@[to_additive]
167
187
lemma union_mul [has_mul α] : (s ∪ t) * u = (s * u) ∪ (t * u) := image2_union_left
168
188
You can’t perform that action at this time.
0 commit comments