@@ -899,58 +899,97 @@ def relabelling.neg_congr : ∀ {x y : pgame}, x.relabelling y → (-x).relabell
899
899
λ i, relabelling.neg_congr (by simpa using R_relabelling (R_equiv i)),
900
900
λ i, relabelling.neg_congr (by simpa using L_relabelling (L_equiv.symm i))⟩
901
901
902
- @[simp] theorem neg_le_iff : Π {x y : pgame}, -y ≤ -x ↔ x ≤ y
902
+ @[simp] theorem neg_le_neg_iff : Π {x y : pgame}, -y ≤ -x ↔ x ≤ y
903
903
| (mk xl xr xL xR) (mk yl yr yL yR) :=
904
904
begin
905
905
rw [le_def, le_def], dsimp,
906
906
refine ⟨λ h, ⟨λ i, _, λ j, _⟩, λ h, ⟨λ i, _, λ j, _⟩⟩,
907
907
{ rcases h.right i with ⟨w, h⟩ | ⟨w, h⟩,
908
- { refine or.inr ⟨to_left_moves_neg.symm w, neg_le_iff .1 _⟩,
908
+ { refine or.inr ⟨to_left_moves_neg.symm w, neg_le_neg_iff .1 _⟩,
909
909
rwa [move_right_neg_symm, neg_neg] },
910
- { exact or.inl ⟨w, neg_le_iff .1 h⟩ } },
910
+ { exact or.inl ⟨w, neg_le_neg_iff .1 h⟩ } },
911
911
{ rcases h.left j with ⟨w, h⟩ | ⟨w, h⟩,
912
- { exact or.inr ⟨w, neg_le_iff .1 h⟩ },
913
- { refine or.inl ⟨to_right_moves_neg.symm w, neg_le_iff .1 _⟩,
912
+ { exact or.inr ⟨w, neg_le_neg_iff .1 h⟩ },
913
+ { refine or.inl ⟨to_right_moves_neg.symm w, neg_le_neg_iff .1 _⟩,
914
914
rwa [move_left_neg_symm, neg_neg] } },
915
915
{ rcases h.right i with ⟨w, h⟩ | ⟨w, h⟩,
916
916
{ refine or.inr ⟨to_right_moves_neg w, _⟩,
917
- convert neg_le_iff .2 h,
917
+ convert neg_le_neg_iff .2 h,
918
918
rw move_right_neg },
919
- { exact or.inl ⟨w, neg_le_iff .2 h⟩ } },
919
+ { exact or.inl ⟨w, neg_le_neg_iff .2 h⟩ } },
920
920
{ rcases h.left j with ⟨w, h⟩ | ⟨w, h⟩,
921
- { exact or.inr ⟨w, neg_le_iff .2 h⟩ },
921
+ { exact or.inr ⟨w, neg_le_neg_iff .2 h⟩ },
922
922
{ refine or.inl ⟨to_left_moves_neg w, _⟩,
923
- convert neg_le_iff .2 h,
923
+ convert neg_le_neg_iff .2 h,
924
924
rw move_left_neg } }
925
925
end
926
926
using_well_founded { dec_tac := pgame_wf_tac }
927
927
928
- theorem neg_congr {x y : pgame} (h : x ≈ y) : -x ≈ - y :=
929
- ⟨neg_le_iff. 2 h. 2 , neg_le_iff. 2 h. 1 ⟩
928
+ @[simp] theorem neg_lf_neg_iff {x y : pgame} : -y ⧏ -x ↔ x ⧏ y :=
929
+ by rw [←pgame.not_le, ←pgame.not_le, not_iff_not, neg_le_neg_iff]
930
930
931
- @[simp] theorem neg_lf_iff {x y : pgame} : -y ⧏ -x ↔ x ⧏ y :=
932
- by rw [←pgame.not_le, ←pgame.not_le, not_iff_not, neg_le_iff ]
931
+ @[simp] theorem neg_lt_neg_iff {x y : pgame} : -y < -x ↔ x < y :=
932
+ by rw [lt_iff_le_and_lf, lt_iff_le_and_lf, neg_le_neg_iff, neg_lf_neg_iff ]
933
933
934
- @[simp] theorem neg_lt_iff {x y : pgame} : -y < -x ↔ x < y :=
935
- by rw [lt_iff_le_and_lf, lt_iff_le_and_lf, neg_le_iff, neg_lf_iff]
934
+ @[simp] theorem neg_equiv_neg_iff {x y : pgame} : -x ≈ -y ↔ x ≈ y :=
935
+ by rw [equiv, equiv, neg_le_neg_iff, neg_le_neg_iff, and.comm]
936
+
937
+ @[simp] theorem neg_fuzzy_neg_iff {x y : pgame} : -x ∥ -y ↔ x ∥ y :=
938
+ by rw [fuzzy, fuzzy, neg_lf_neg_iff, neg_lf_neg_iff, and.comm]
939
+
940
+ theorem neg_le_iff {x y : pgame} : -y ≤ x ↔ -x ≤ y :=
941
+ by rw [←neg_neg x, neg_le_neg_iff, neg_neg]
942
+
943
+ theorem neg_lf_iff {x y : pgame} : -y ⧏ x ↔ -x ⧏ y :=
944
+ by rw [←neg_neg x, neg_lf_neg_iff, neg_neg]
945
+
946
+ theorem neg_lt_iff {x y : pgame} : -y < x ↔ -x < y :=
947
+ by rw [←neg_neg x, neg_lt_neg_iff, neg_neg]
948
+
949
+ theorem neg_equiv_iff {x y : pgame} : -x ≈ y ↔ x ≈ -y :=
950
+ by rw [←neg_neg y, neg_equiv_neg_iff, neg_neg]
951
+
952
+ theorem neg_fuzzy_iff {x y : pgame} : -x ∥ y ↔ x ∥ -y :=
953
+ by rw [←neg_neg y, neg_fuzzy_neg_iff, neg_neg]
954
+
955
+ theorem le_neg_iff {x y : pgame} : y ≤ -x ↔ x ≤ -y :=
956
+ by rw [←neg_neg x, neg_le_neg_iff, neg_neg]
957
+
958
+ theorem lf_neg_iff {x y : pgame} : y ⧏ -x ↔ x ⧏ -y :=
959
+ by rw [←neg_neg x, neg_lf_neg_iff, neg_neg]
960
+
961
+ theorem lt_neg_iff {x y : pgame} : y < -x ↔ x < -y :=
962
+ by rw [←neg_neg x, neg_lt_neg_iff, neg_neg]
936
963
937
964
@[simp] theorem neg_le_zero_iff {x : pgame} : -x ≤ 0 ↔ 0 ≤ x :=
938
- by { convert neg_le_iff, rw pgame.neg_zero }
965
+ by rw [ neg_le_iff, pgame.neg_zero]
939
966
940
967
@[simp] theorem zero_le_neg_iff {x : pgame} : 0 ≤ -x ↔ x ≤ 0 :=
941
- by { convert neg_le_iff, rw pgame.neg_zero }
968
+ by rw [le_neg_iff, pgame.neg_zero]
942
969
943
970
@[simp] theorem neg_lf_zero_iff {x : pgame} : -x ⧏ 0 ↔ 0 ⧏ x :=
944
- by { convert neg_lf_iff, rw pgame.neg_zero }
971
+ by rw [ neg_lf_iff, pgame.neg_zero]
945
972
946
973
@[simp] theorem zero_lf_neg_iff {x : pgame} : 0 ⧏ -x ↔ x ⧏ 0 :=
947
- by { convert neg_lf_iff, rw pgame.neg_zero }
974
+ by rw [lf_neg_iff, pgame.neg_zero]
948
975
949
976
@[simp] theorem neg_lt_zero_iff {x : pgame} : -x < 0 ↔ 0 < x :=
950
- by { convert neg_lt_iff, rw pgame.neg_zero }
977
+ by rw [ neg_lt_iff, pgame.neg_zero]
951
978
952
979
@[simp] theorem zero_lt_neg_iff {x : pgame} : 0 < -x ↔ x < 0 :=
953
- by { convert neg_lt_iff, rw pgame.neg_zero }
980
+ by rw [lt_neg_iff, pgame.neg_zero]
981
+
982
+ @[simp] theorem neg_equiv_zero_iff {x : pgame} : -x ≈ 0 ↔ x ≈ 0 :=
983
+ by rw [neg_equiv_iff, pgame.neg_zero]
984
+
985
+ @[simp] theorem neg_fuzzy_zero_iff {x : pgame} : -x ∥ 0 ↔ x ∥ 0 :=
986
+ by rw [neg_fuzzy_iff, pgame.neg_zero]
987
+
988
+ @[simp] theorem zero_equiv_neg_iff {x : pgame} : 0 ≈ -x ↔ 0 ≈ x :=
989
+ by rw [←neg_equiv_iff, pgame.neg_zero]
990
+
991
+ @[simp] theorem zero_fuzzy_neg_iff {x : pgame} : 0 ∥ -x ↔ 0 ∥ x :=
992
+ by rw [←neg_fuzzy_iff, pgame.neg_zero]
954
993
955
994
/-- The sum of `x = {xL | xR}` and `y = {yL | yR}` is `{xL + y, x + yL | xR + y, x + yR}`. -/
956
995
instance : has_add pgame.{u} := ⟨λ x y, begin
@@ -1208,7 +1247,7 @@ end
1208
1247
1209
1248
theorem zero_le_add_left_neg (x : pgame) : 0 ≤ -x + x :=
1210
1249
begin
1211
- rw [←neg_le_iff , pgame.neg_zero],
1250
+ rw [←neg_le_neg_iff , pgame.neg_zero],
1212
1251
exact neg_add_le.trans (add_left_neg_le_zero _)
1213
1252
end
1214
1253
@@ -1299,7 +1338,7 @@ theorem add_congr_right {x y z : pgame} : y ≈ z → x + y ≈ x + z :=
1299
1338
add_congr equiv_rfl
1300
1339
1301
1340
theorem sub_congr {w x y z : pgame} (h₁ : w ≈ x) (h₂ : y ≈ z) : w - y ≈ x - z :=
1302
- add_congr h₁ (neg_congr h₂)
1341
+ add_congr h₁ (neg_equiv_neg_iff. 2 h₂)
1303
1342
1304
1343
theorem sub_congr_left {x y z : pgame} (h : x ≈ y) : x - z ≈ y - z :=
1305
1344
sub_congr h equiv_rfl
0 commit comments