Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 6f6739f

Browse files
committed
chore(algebra/star/basic): split out big_operators import (#17792)
cf #17772 (comment), cc @eric-wieser
1 parent 9114ddf commit 6f6739f

File tree

4 files changed

+30
-21
lines changed

4 files changed

+30
-21
lines changed

archive/100-theorems-list/42_inverse_triangle_sum.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,7 @@ Copyright (c) 2020. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Jalex Stark, Yury Kudryashov
55
-/
6+
import algebra.big_operators.basic
67
import data.real.basic
78

89
/-!

src/algebra/star/basic.lean

Lines changed: 2 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,6 @@ Copyright (c) 2020 Scott Morrison. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Scott Morrison
55
-/
6-
import algebra.big_operators.basic
76
import algebra.ring.aut
87
import algebra.ring.comp_typeclasses
98
import data.rat.cast
@@ -39,6 +38,8 @@ positive cone which is the closure of the sums of elements `star r * r`. A weake
3938
advantage of not requiring a topology.
4039
-/
4140

41+
assert_not_exists finset
42+
assert_not_exists subgroup
4243

4344
universes u v
4445

@@ -165,16 +166,6 @@ op_injective $
165166
star (x / y) = star x / star y :=
166167
map_div (star_mul_aut : R ≃* R) _ _
167168

168-
section
169-
open_locale big_operators
170-
171-
@[simp] lemma star_prod [comm_monoid R] [star_semigroup R] {α : Type*}
172-
(s : finset α) (f : α → R):
173-
star (∏ x in s, f x) = ∏ x in s, star (f x) :=
174-
map_prod (star_mul_aut : R ≃* R) _ _
175-
176-
end
177-
178169
/--
179170
Any commutative monoid admits the trivial `*`-structure.
180171
@@ -240,16 +231,6 @@ star_eq_zero.not
240231
star (n • x) = n • star x :=
241232
(star_add_equiv : R ≃+ R).to_add_monoid_hom.map_zsmul _ _
242233

243-
section
244-
open_locale big_operators
245-
246-
@[simp] lemma star_sum [add_comm_monoid R] [star_add_monoid R] {α : Type*}
247-
(s : finset α) (f : α → R):
248-
star (∑ x in s, f x) = ∑ x in s, star (f x) :=
249-
(star_add_equiv : R ≃+ R).map_sum _ _
250-
251-
end
252-
253234
/--
254235
A `*`-ring `R` is a (semi)ring with an involutive `star` operation which is additive
255236
which makes `R` with its multiplicative structure into a `*`-semigroup
Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
/-
2+
Copyright (c) 2021 Eric Wieser. All rights reserved.
3+
Released under Apache 2.0 license as described in the file LICENSE.
4+
Authors: Eric Wieser
5+
-/
6+
import algebra.big_operators.basic
7+
import algebra.star.basic
8+
9+
/-! # Big-operators lemmas about `star` algebraic operations
10+
11+
These results are kept separate from `algebra.star.basic` to avoid it needing to import `finset`.
12+
-/
13+
14+
variables {R : Type*}
15+
16+
open_locale big_operators
17+
18+
@[simp] lemma star_prod [comm_monoid R] [star_semigroup R] {α : Type*}
19+
(s : finset α) (f : α → R):
20+
star (∏ x in s, f x) = ∏ x in s, star (f x) :=
21+
map_prod (star_mul_aut : R ≃* R) _ _
22+
23+
@[simp] lemma star_sum [add_comm_monoid R] [star_add_monoid R] {α : Type*}
24+
(s : finset α) (f : α → R):
25+
star (∑ x in s, f x) = ∑ x in s, star (f x) :=
26+
(star_add_equiv : R ≃+ R).map_sum _ _

src/data/matrix/basic.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@ import algebra.big_operators.ring
1010
import algebra.big_operators.ring_equiv
1111
import algebra.module.linear_map
1212
import algebra.module.pi
13+
import algebra.star.big_operators
1314
import algebra.star.module
1415
import algebra.star.pi
1516
import data.fintype.big_operators

0 commit comments

Comments
 (0)