@@ -1590,21 +1590,32 @@ begin
1590
1590
exact to_map_eq_zero_iff.mp h }
1591
1591
end
1592
1592
1593
- /-- A field is algebraic over the ring `A` iff it is algebraic over the field of fractions of `A`.
1593
+ variables (A K)
1594
+
1595
+ /-- An element of a field is algebraic over the ring `A` iff it is algebraic
1596
+ over the field of fractions of `A`.
1594
1597
-/
1595
- lemma comap_is_algebraic_iff [algebra A L] [algebra K L] [is_scalar_tower A K L] :
1596
- algebra. is_algebraic A L ↔ algebra. is_algebraic K L :=
1598
+ lemma is_algebraic_iff [algebra A L] [algebra K L] [is_scalar_tower A K L] {x : L} :
1599
+ is_algebraic A x ↔ is_algebraic K x :=
1597
1600
begin
1598
- split; intros h x; obtain ⟨p, hp, px⟩ := h x ,
1601
+ split; rintros ⟨p, hp, px⟩,
1599
1602
{ refine ⟨p.map (algebra_map A K), λ h, hp (polynomial.ext (λ i, _)), _⟩,
1600
- { have : algebra_map A K (p.coeff i) = 0 := trans (polynomial.coeff_map _ _).symm (by simp [h]),
1601
- exact to_map_eq_zero_iff.mp this },
1602
- { rwa is_scalar_tower.aeval_apply _ K at px } },
1603
+ { have : algebra_map A K (p.coeff i) = 0 := trans (polynomial.coeff_map _ _).symm (by simp [h]),
1604
+ exact to_map_eq_zero_iff.mp this },
1605
+ { rwa is_scalar_tower.aeval_apply _ K at px } },
1603
1606
{ exact ⟨integer_normalization _ p,
1604
1607
mt integer_normalization_eq_zero_iff.mp hp,
1605
1608
integer_normalization_aeval_eq_zero _ p px⟩ },
1606
1609
end
1607
1610
1611
+ variables {A K}
1612
+
1613
+ /-- A field is algebraic over the ring `A` iff it is algebraic over the field of fractions of `A`.
1614
+ -/
1615
+ lemma comap_is_algebraic_iff [algebra A L] [algebra K L] [is_scalar_tower A K L] :
1616
+ algebra.is_algebraic A L ↔ algebra.is_algebraic K L :=
1617
+ ⟨λ h x, (is_algebraic_iff A K).mp (h x), λ h x, (is_algebraic_iff A K).mpr (h x)⟩
1618
+
1608
1619
section num_denom
1609
1620
1610
1621
variables (A) [unique_factorization_monoid A]
0 commit comments