@@ -47,14 +47,14 @@ include hab
47
47
theorem lhopital_zero_right_on_Ioo
48
48
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : ∀ x ∈ Ioo a b, has_deriv_at g (g' x) x)
49
49
(hg' : ∀ x ∈ Ioo a b, g' x ≠ 0 )
50
- (hfa : tendsto f (𝓝[Ioi a ] a) (𝓝 0 )) (hga : tendsto g (𝓝[Ioi a ] a) (𝓝 0 ))
51
- (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[Ioi a ] a) l) :
52
- tendsto (λ x, (f x) / (g x)) (𝓝[Ioi a ] a) l :=
50
+ (hfa : tendsto f (𝓝[> ] a) (𝓝 0 )) (hga : tendsto g (𝓝[> ] a) (𝓝 0 ))
51
+ (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[> ] a) l) :
52
+ tendsto (λ x, (f x) / (g x)) (𝓝[> ] a) l :=
53
53
begin
54
54
have sub : ∀ x ∈ Ioo a b, Ioo a x ⊆ Ioo a b := λ x hx, Ioo_subset_Ioo (le_refl a) (le_of_lt hx.2 ),
55
55
have hg : ∀ x ∈ (Ioo a b), g x ≠ 0 ,
56
56
{ intros x hx h,
57
- have : tendsto g (𝓝[Iio x ] x) (𝓝 0 ),
57
+ have : tendsto g (𝓝[< ] x) (𝓝 0 ),
58
58
{ rw [← h, ← nhds_within_Ioo_eq_nhds_within_Iio hx.1 ],
59
59
exact ((hgg' x hx).continuous_at.continuous_within_at.mono $ sub x hx).tendsto },
60
60
obtain ⟨y, hyx, hy⟩ : ∃ c ∈ Ioo a x, g' c = 0 ,
@@ -220,9 +220,9 @@ include hab
220
220
221
221
theorem lhopital_zero_right_on_Ioo
222
222
(hdf : differentiable_on ℝ f (Ioo a b)) (hg' : ∀ x ∈ Ioo a b, deriv g x ≠ 0 )
223
- (hfa : tendsto f (𝓝[Ioi a ] a) (𝓝 0 )) (hga : tendsto g (𝓝[Ioi a ] a) (𝓝 0 ))
224
- (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[Ioi a ] a) l) :
225
- tendsto (λ x, (f x) / (g x)) (𝓝[Ioi a ] a) l :=
223
+ (hfa : tendsto f (𝓝[> ] a) (𝓝 0 )) (hga : tendsto g (𝓝[> ] a) (𝓝 0 ))
224
+ (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[> ] a) l) :
225
+ tendsto (λ x, (f x) / (g x)) (𝓝[> ] a) l :=
226
226
begin
227
227
have hdf : ∀ x ∈ Ioo a b, differentiable_at ℝ f x,
228
228
from λ x hx, (hdf x hx).differentiable_at (Ioo_mem_nhds hx.1 hx.2 ),
@@ -307,19 +307,19 @@ namespace has_deriv_at
307
307
308
308
/-- L'Hôpital's rule for approaching a real from the right, `has_deriv_at` version -/
309
309
theorem lhopital_zero_nhds_right
310
- (hff' : ∀ᶠ x in 𝓝[Ioi a ] a, has_deriv_at f (f' x) x)
311
- (hgg' : ∀ᶠ x in 𝓝[Ioi a ] a, has_deriv_at g (g' x) x)
312
- (hg' : ∀ᶠ x in 𝓝[Ioi a ] a, g' x ≠ 0 )
313
- (hfa : tendsto f (𝓝[Ioi a ] a) (𝓝 0 )) (hga : tendsto g (𝓝[Ioi a ] a) (𝓝 0 ))
314
- (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[Ioi a ] a) l) :
315
- tendsto (λ x, (f x) / (g x)) (𝓝[Ioi a ] a) l :=
310
+ (hff' : ∀ᶠ x in 𝓝[> ] a, has_deriv_at f (f' x) x)
311
+ (hgg' : ∀ᶠ x in 𝓝[> ] a, has_deriv_at g (g' x) x)
312
+ (hg' : ∀ᶠ x in 𝓝[> ] a, g' x ≠ 0 )
313
+ (hfa : tendsto f (𝓝[> ] a) (𝓝 0 )) (hga : tendsto g (𝓝[> ] a) (𝓝 0 ))
314
+ (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[> ] a) l) :
315
+ tendsto (λ x, (f x) / (g x)) (𝓝[> ] a) l :=
316
316
begin
317
317
rw eventually_iff_exists_mem at *,
318
318
rcases hff' with ⟨s₁, hs₁, hff'⟩,
319
319
rcases hgg' with ⟨s₂, hs₂, hgg'⟩,
320
320
rcases hg' with ⟨s₃, hs₃, hg'⟩,
321
321
let s := s₁ ∩ s₂ ∩ s₃,
322
- have hs : s ∈ 𝓝[Ioi a ] a := inter_mem (inter_mem hs₁ hs₂) hs₃,
322
+ have hs : s ∈ 𝓝[> ] a := inter_mem (inter_mem hs₁ hs₂) hs₃,
323
323
rw mem_nhds_within_Ioi_iff_exists_Ioo_subset at hs,
324
324
rcases hs with ⟨u, hau, hu⟩,
325
325
refine lhopital_zero_right_on_Ioo hau _ _ _ hfa hga hdiv;
@@ -330,19 +330,19 @@ end
330
330
331
331
/-- L'Hôpital's rule for approaching a real from the left, `has_deriv_at` version -/
332
332
theorem lhopital_zero_nhds_left
333
- (hff' : ∀ᶠ x in 𝓝[Iio a ] a, has_deriv_at f (f' x) x)
334
- (hgg' : ∀ᶠ x in 𝓝[Iio a ] a, has_deriv_at g (g' x) x)
335
- (hg' : ∀ᶠ x in 𝓝[Iio a ] a, g' x ≠ 0 )
336
- (hfa : tendsto f (𝓝[Iio a ] a) (𝓝 0 )) (hga : tendsto g (𝓝[Iio a ] a) (𝓝 0 ))
337
- (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[Iio a ] a) l) :
338
- tendsto (λ x, (f x) / (g x)) (𝓝[Iio a ] a) l :=
333
+ (hff' : ∀ᶠ x in 𝓝[< ] a, has_deriv_at f (f' x) x)
334
+ (hgg' : ∀ᶠ x in 𝓝[< ] a, has_deriv_at g (g' x) x)
335
+ (hg' : ∀ᶠ x in 𝓝[< ] a, g' x ≠ 0 )
336
+ (hfa : tendsto f (𝓝[< ] a) (𝓝 0 )) (hga : tendsto g (𝓝[< ] a) (𝓝 0 ))
337
+ (hdiv : tendsto (λ x, (f' x) / (g' x)) (𝓝[< ] a) l) :
338
+ tendsto (λ x, (f x) / (g x)) (𝓝[< ] a) l :=
339
339
begin
340
340
rw eventually_iff_exists_mem at *,
341
341
rcases hff' with ⟨s₁, hs₁, hff'⟩,
342
342
rcases hgg' with ⟨s₂, hs₂, hgg'⟩,
343
343
rcases hg' with ⟨s₃, hs₃, hg'⟩,
344
344
let s := s₁ ∩ s₂ ∩ s₃,
345
- have hs : s ∈ 𝓝[Iio a ] a := inter_mem (inter_mem hs₁ hs₂) hs₃,
345
+ have hs : s ∈ 𝓝[< ] a := inter_mem (inter_mem hs₁ hs₂) hs₃,
346
346
rw mem_nhds_within_Iio_iff_exists_Ioo_subset at hs,
347
347
rcases hs with ⟨l, hal, hl⟩,
348
348
refine lhopital_zero_left_on_Ioo hal _ _ _ hfa hga hdiv;
@@ -436,36 +436,36 @@ namespace deriv
436
436
437
437
/-- **L'Hôpital's rule** for approaching a real from the right, `deriv` version -/
438
438
theorem lhopital_zero_nhds_right
439
- (hdf : ∀ᶠ x in 𝓝[Ioi a ] a, differentiable_at ℝ f x)
440
- (hg' : ∀ᶠ x in 𝓝[Ioi a ] a, deriv g x ≠ 0 )
441
- (hfa : tendsto f (𝓝[Ioi a ] a) (𝓝 0 )) (hga : tendsto g (𝓝[Ioi a ] a) (𝓝 0 ))
442
- (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[Ioi a ] a) l) :
443
- tendsto (λ x, (f x) / (g x)) (𝓝[Ioi a ] a) l :=
439
+ (hdf : ∀ᶠ x in 𝓝[> ] a, differentiable_at ℝ f x)
440
+ (hg' : ∀ᶠ x in 𝓝[> ] a, deriv g x ≠ 0 )
441
+ (hfa : tendsto f (𝓝[> ] a) (𝓝 0 )) (hga : tendsto g (𝓝[> ] a) (𝓝 0 ))
442
+ (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[> ] a) l) :
443
+ tendsto (λ x, (f x) / (g x)) (𝓝[> ] a) l :=
444
444
begin
445
- have hdg : ∀ᶠ x in 𝓝[Ioi a ] a, differentiable_at ℝ g x,
445
+ have hdg : ∀ᶠ x in 𝓝[> ] a, differentiable_at ℝ g x,
446
446
from hg'.mp (eventually_of_forall $
447
447
λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))),
448
- have hdf' : ∀ᶠ x in 𝓝[Ioi a ] a, has_deriv_at f (deriv f x) x,
448
+ have hdf' : ∀ᶠ x in 𝓝[> ] a, has_deriv_at f (deriv f x) x,
449
449
from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
450
- have hdg' : ∀ᶠ x in 𝓝[Ioi a ] a, has_deriv_at g (deriv g x) x,
450
+ have hdg' : ∀ᶠ x in 𝓝[> ] a, has_deriv_at g (deriv g x) x,
451
451
from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
452
452
exact has_deriv_at.lhopital_zero_nhds_right hdf' hdg' hg' hfa hga hdiv
453
453
end
454
454
455
455
/-- **L'Hôpital's rule** for approaching a real from the left, `deriv` version -/
456
456
theorem lhopital_zero_nhds_left
457
- (hdf : ∀ᶠ x in 𝓝[Iio a ] a, differentiable_at ℝ f x)
458
- (hg' : ∀ᶠ x in 𝓝[Iio a ] a, deriv g x ≠ 0 )
459
- (hfa : tendsto f (𝓝[Iio a ] a) (𝓝 0 )) (hga : tendsto g (𝓝[Iio a ] a) (𝓝 0 ))
460
- (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[Iio a ] a) l) :
461
- tendsto (λ x, (f x) / (g x)) (𝓝[Iio a ] a) l :=
457
+ (hdf : ∀ᶠ x in 𝓝[< ] a, differentiable_at ℝ f x)
458
+ (hg' : ∀ᶠ x in 𝓝[< ] a, deriv g x ≠ 0 )
459
+ (hfa : tendsto f (𝓝[< ] a) (𝓝 0 )) (hga : tendsto g (𝓝[< ] a) (𝓝 0 ))
460
+ (hdiv : tendsto (λ x, ((deriv f) x) / ((deriv g) x)) (𝓝[< ] a) l) :
461
+ tendsto (λ x, (f x) / (g x)) (𝓝[< ] a) l :=
462
462
begin
463
- have hdg : ∀ᶠ x in 𝓝[Iio a ] a, differentiable_at ℝ g x,
463
+ have hdg : ∀ᶠ x in 𝓝[< ] a, differentiable_at ℝ g x,
464
464
from hg'.mp (eventually_of_forall $
465
465
λ _ hg', classical.by_contradiction (λ h, hg' (deriv_zero_of_not_differentiable_at h))),
466
- have hdf' : ∀ᶠ x in 𝓝[Iio a ] a, has_deriv_at f (deriv f x) x,
466
+ have hdf' : ∀ᶠ x in 𝓝[< ] a, has_deriv_at f (deriv f x) x,
467
467
from hdf.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
468
- have hdg' : ∀ᶠ x in 𝓝[Iio a ] a, has_deriv_at g (deriv g x) x,
468
+ have hdg' : ∀ᶠ x in 𝓝[< ] a, has_deriv_at g (deriv g x) x,
469
469
from hdg.mp (eventually_of_forall $ λ _, differentiable_at.has_deriv_at),
470
470
exact has_deriv_at.lhopital_zero_nhds_left hdf' hdg' hg' hfa hga hdiv
471
471
end
0 commit comments