@@ -479,10 +479,6 @@ f.to_linear_map.to_add_monoid_hom.isometry_iff_norm
479
479
480
480
variables [ring_hom_isometric σ₁₂] (f : E →SL[σ₁₂] F)
481
481
482
- /-- A continuous linear map is automatically uniformly continuous. -/
483
- protected theorem uniform_continuous : uniform_continuous f :=
484
- f.lipschitz.uniform_continuous
485
-
486
482
@[simp, nontriviality] lemma op_norm_subsingleton [subsingleton E] : ∥f∥ = 0 :=
487
483
begin
488
484
refine le_antisymm _ (norm_nonneg _),
@@ -1164,10 +1160,11 @@ section
1164
1160
variables [nondiscrete_normed_field 𝕜] [nondiscrete_normed_field 𝕜₂] [nondiscrete_normed_field 𝕜₃]
1165
1161
[normed_space 𝕜 E] [normed_space 𝕜₂ F] [normed_space 𝕜₃ G] [normed_space 𝕜 Fₗ] (c : 𝕜)
1166
1162
{σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃}
1167
- [ring_hom_isometric σ₁₂] (f g : E →SL[σ₁₂] F) (x y z : E)
1163
+ (f g : E →SL[σ₁₂] F) (x y z : E)
1168
1164
1169
- lemma linear_map.bound_of_shell (f : E →ₛₗ[σ₁₂] F) {ε C : ℝ} (ε_pos : 0 < ε) {c : 𝕜}
1170
- (hc : 1 < ∥c∥) (hf : ∀ x, ε / ∥c∥ ≤ ∥x∥ → ∥x∥ < ε → ∥f x∥ ≤ C * ∥x∥) (x : E) :
1165
+ lemma linear_map.bound_of_shell [ring_hom_isometric σ₁₂] (f : E →ₛₗ[σ₁₂] F) {ε C : ℝ}
1166
+ (ε_pos : 0 < ε) {c : 𝕜} (hc : 1 < ∥c∥)
1167
+ (hf : ∀ x, ε / ∥c∥ ≤ ∥x∥ → ∥x∥ < ε → ∥f x∥ ≤ C * ∥x∥) (x : E) :
1171
1168
∥f x∥ ≤ C * ∥x∥ :=
1172
1169
begin
1173
1170
by_cases hx : x = 0 , { simp [hx] },
@@ -1200,7 +1197,7 @@ section op_norm
1200
1197
open set real
1201
1198
1202
1199
/-- An operator is zero iff its norm vanishes. -/
1203
- theorem op_norm_zero_iff : ∥f∥ = 0 ↔ f = 0 :=
1200
+ theorem op_norm_zero_iff [ring_hom_isometric σ₁₂] : ∥f∥ = 0 ↔ f = 0 :=
1204
1201
iff.intro
1205
1202
(λ hn, continuous_linear_map.ext (λ x, norm_le_zero_iff.1
1206
1203
(calc _ ≤ ∥f∥ * ∥x∥ : le_op_norm _ _
@@ -1221,8 +1218,8 @@ instance norm_one_class [nontrivial E] : norm_one_class (E →L[𝕜] E) := ⟨n
1221
1218
1222
1219
/-- Continuous linear maps themselves form a normed space with respect to
1223
1220
the operator norm. -/
1224
- instance to_normed_group : normed_group (E →SL[σ₁₂] F) :=
1225
- normed_group.of_core _ ⟨op_norm_zero_iff, op_norm_add_le, op_norm_neg⟩
1221
+ instance to_normed_group [ring_hom_isometric σ₁₂] : normed_group (E →SL[σ₁₂] F) :=
1222
+ normed_group.of_core _ ⟨λ f, op_norm_zero_iff f , op_norm_add_le, op_norm_neg⟩
1226
1223
1227
1224
/-- Continuous linear maps form a normed ring with respect to the operator norm. -/
1228
1225
instance to_normed_ring : normed_ring (E →L[𝕜] E) :=
@@ -1238,7 +1235,8 @@ instance to_normed_algebra [nontrivial E] : normed_algebra 𝕜 (E →L[𝕜] E)
1238
1235
1239
1236
variable {f}
1240
1237
1241
- lemma homothety_norm [nontrivial E] (f : E →SL[σ₁₂] F) {a : ℝ} (hf : ∀x, ∥f x∥ = a * ∥x∥) :
1238
+ lemma homothety_norm [ring_hom_isometric σ₁₂] [nontrivial E] (f : E →SL[σ₁₂] F) {a : ℝ}
1239
+ (hf : ∀x, ∥f x∥ = a * ∥x∥) :
1242
1240
∥f∥ = a :=
1243
1241
begin
1244
1242
obtain ⟨x, hx⟩ : ∃ (x : E), x ≠ 0 := exists_ne 0 ,
@@ -1296,7 +1294,7 @@ section completeness
1296
1294
open_locale topological_space
1297
1295
open filter
1298
1296
1299
- variables {E' : Type *} [semi_normed_group E'] [normed_space 𝕜 E']
1297
+ variables {E' : Type *} [semi_normed_group E'] [normed_space 𝕜 E'] [ring_hom_isometric σ₁₂]
1300
1298
1301
1299
/-- Construct a bundled continuous (semi)linear map from a map `f : E → F` and a proof of the fact
1302
1300
that it belongs to the closure of the image of a bounded set `s : set (E →SL[σ₁₂] F)` under coercion
@@ -1417,7 +1415,7 @@ extend_unique _ _ _ _ _ (zero_comp _)
1417
1415
end
1418
1416
1419
1417
section
1420
- variables {N : ℝ≥0 } (h_e : ∀x, ∥x∥ ≤ N * ∥e x∥)
1418
+ variables {N : ℝ≥0 } (h_e : ∀x, ∥x∥ ≤ N * ∥e x∥) [ring_hom_isometric σ₁₂]
1421
1419
1422
1420
local notation `ψ ` := f.extend e h_dense (uniform_embedding_of_bound _ h_e).to_uniform_inducing
1423
1421
@@ -1457,7 +1455,8 @@ end continuous_linear_map
1457
1455
1458
1456
namespace linear_isometry
1459
1457
1460
- @[simp] lemma norm_to_continuous_linear_map [nontrivial E] (f : E →ₛₗᵢ[σ₁₂] F) :
1458
+ @[simp] lemma norm_to_continuous_linear_map [nontrivial E] [ring_hom_isometric σ₁₂]
1459
+ (f : E →ₛₗᵢ[σ₁₂] F) :
1461
1460
∥f.to_continuous_linear_map∥ = 1 :=
1462
1461
f.to_continuous_linear_map.homothety_norm $ by simp
1463
1462
@@ -1466,7 +1465,8 @@ variables {σ₁₃ : 𝕜 →+* 𝕜₃} [ring_hom_comp_triple σ₁₂ σ₂
1466
1465
include σ₁₃
1467
1466
/-- Postcomposition of a continuous linear map with a linear isometry preserves
1468
1467
the operator norm. -/
1469
- lemma norm_to_continuous_linear_map_comp (f : F →ₛₗᵢ[σ₂₃] G) {g : E →SL[σ₁₂] F} :
1468
+ lemma norm_to_continuous_linear_map_comp [ring_hom_isometric σ₁₂] (f : F →ₛₗᵢ[σ₂₃] G)
1469
+ {g : E →SL[σ₁₂] F} :
1470
1470
∥f.to_continuous_linear_map.comp g∥ = ∥g∥ :=
1471
1471
op_norm_ext (f.to_continuous_linear_map.comp g) g
1472
1472
(λ x, by simp only [norm_map, coe_to_continuous_linear_map, coe_comp'])
@@ -1594,12 +1594,6 @@ protected lemma antilipschitz (e : E ≃SL[σ₁₂] F) :
1594
1594
antilipschitz_with (nnnorm (e.symm : F →SL[σ₂₁] E)) e :=
1595
1595
e.symm.lipschitz.to_right_inverse e.left_inv
1596
1596
1597
- include σ₂₁
1598
- /-- A continuous linear equiv is a uniform embedding. -/
1599
- lemma uniform_embedding [ring_hom_isometric σ₁₂] (e : E ≃SL[σ₁₂] F) : uniform_embedding e :=
1600
- e.antilipschitz.uniform_embedding e.lipschitz.uniform_continuous
1601
- omit σ₂₁
1602
-
1603
1597
lemma one_le_norm_mul_norm_symm [ring_hom_isometric σ₁₂] [nontrivial E] (e : E ≃SL[σ₁₂] F) :
1604
1598
1 ≤ ∥(e : E →SL[σ₁₂] F)∥ * ∥(e.symm : F →SL[σ₂₁] E)∥ :=
1605
1599
begin
@@ -1676,21 +1670,6 @@ end
1676
1670
1677
1671
end continuous_linear_equiv
1678
1672
1679
- variables [nondiscrete_normed_field 𝕜] [nondiscrete_normed_field 𝕜₂]
1680
- [normed_space 𝕜 E] [normed_space 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜}
1681
- [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
1682
- [ring_hom_isometric σ₁₂] [ring_hom_isometric σ₂₁]
1683
-
1684
- include σ₂₁
1685
- lemma linear_equiv.uniform_embedding (e : E ≃ₛₗ[σ₁₂] F) (h₁ : continuous e)
1686
- (h₂ : continuous e.symm) : uniform_embedding e :=
1687
- continuous_linear_equiv.uniform_embedding
1688
- ({ continuous_to_fun := h₁,
1689
- continuous_inv_fun := h₂,
1690
- .. e } : E ≃SL[σ₁₂] F)
1691
-
1692
- omit σ₂₁
1693
-
1694
1673
end normed
1695
1674
1696
1675
/--
0 commit comments