@@ -29,6 +29,7 @@ preserving condition is relaxed to quasi measure preserving.
29
29
-/
30
30
31
31
open set function filter measure_theory measure_theory.measure
32
+ open_locale ennreal
32
33
33
34
variables {α : Type *} {m : measurable_space α} (f : α → α) {s : set α}
34
35
include m
107
108
108
109
end measure_theory.measure_preserving
109
110
110
- namespace ergodic
111
-
112
- /-- An ergodic map is quasi ergodic. -/
113
- lemma quasi_ergodic (hf : ergodic f μ) : quasi_ergodic f μ :=
114
- { .. hf.to_pre_ergodic,
115
- .. hf.to_measure_preserving.quasi_measure_preserving, }
116
-
117
- end ergodic
118
-
119
111
namespace quasi_ergodic
120
112
121
113
/-- For a quasi ergodic map, sets that are almost invariant (rather than strictly invariant) are
@@ -131,3 +123,64 @@ begin
131
123
end
132
124
133
125
end quasi_ergodic
126
+
127
+ namespace ergodic
128
+
129
+ /-- An ergodic map is quasi ergodic. -/
130
+ lemma quasi_ergodic (hf : ergodic f μ) : quasi_ergodic f μ :=
131
+ { .. hf.to_pre_ergodic,
132
+ .. hf.to_measure_preserving.quasi_measure_preserving, }
133
+
134
+ /-- See also `ergodic.ae_empty_or_univ_of_preimage_ae_le`. -/
135
+ lemma ae_empty_or_univ_of_preimage_ae_le'
136
+ (hf : ergodic f μ) (hs : measurable_set s) (hs' : f⁻¹' s ≤ᵐ[μ] s) (h_fin : μ s ≠ ∞) :
137
+ s =ᵐ[μ] (∅ : set α) ∨ s =ᵐ[μ] univ :=
138
+ begin
139
+ refine hf.quasi_ergodic.ae_empty_or_univ' hs _,
140
+ refine ae_eq_of_ae_subset_of_measure_ge hs' (hf.measure_preimage hs).symm.le _ h_fin,
141
+ exact measurable_set_preimage hf.measurable hs,
142
+ end
143
+
144
+ /-- See also `ergodic.ae_empty_or_univ_of_ae_le_preimage`. -/
145
+ lemma ae_empty_or_univ_of_ae_le_preimage'
146
+ (hf : ergodic f μ) (hs : measurable_set s) (hs' : s ≤ᵐ[μ] f⁻¹' s) (h_fin : μ s ≠ ∞) :
147
+ s =ᵐ[μ] (∅ : set α) ∨ s =ᵐ[μ] univ :=
148
+ begin
149
+ replace h_fin : μ (f⁻¹' s) ≠ ∞, { rwa hf.measure_preimage hs, },
150
+ refine hf.quasi_ergodic.ae_empty_or_univ' hs _,
151
+ exact (ae_eq_of_ae_subset_of_measure_ge hs' (hf.measure_preimage hs).le hs h_fin).symm,
152
+ end
153
+
154
+ /-- See also `ergodic.ae_empty_or_univ_of_image_ae_le`. -/
155
+ lemma ae_empty_or_univ_of_image_ae_le'
156
+ (hf : ergodic f μ) (hs : measurable_set s) (hs' : f '' s ≤ᵐ[μ] s) (h_fin : μ s ≠ ∞) :
157
+ s =ᵐ[μ] (∅ : set α) ∨ s =ᵐ[μ] univ :=
158
+ begin
159
+ replace hs' : s ≤ᵐ[μ] f ⁻¹' s :=
160
+ (has_subset.subset.eventually_le (subset_preimage_image f s)).trans
161
+ (hf.quasi_measure_preserving.preimage_mono_ae hs'),
162
+ exact ae_empty_or_univ_of_ae_le_preimage' hf hs hs' h_fin,
163
+ end
164
+
165
+ section is_finite_measure
166
+
167
+ variables [is_finite_measure μ]
168
+
169
+ lemma ae_empty_or_univ_of_preimage_ae_le
170
+ (hf : ergodic f μ) (hs : measurable_set s) (hs' : f⁻¹' s ≤ᵐ[μ] s) :
171
+ s =ᵐ[μ] (∅ : set α) ∨ s =ᵐ[μ] univ :=
172
+ ae_empty_or_univ_of_preimage_ae_le' hf hs hs' $ measure_ne_top μ s
173
+
174
+ lemma ae_empty_or_univ_of_ae_le_preimage
175
+ (hf : ergodic f μ) (hs : measurable_set s) (hs' : s ≤ᵐ[μ] f⁻¹' s) :
176
+ s =ᵐ[μ] (∅ : set α) ∨ s =ᵐ[μ] univ :=
177
+ ae_empty_or_univ_of_ae_le_preimage' hf hs hs' $ measure_ne_top μ s
178
+
179
+ lemma ae_empty_or_univ_of_image_ae_le
180
+ (hf : ergodic f μ) (hs : measurable_set s) (hs' : f '' s ≤ᵐ[μ] s) :
181
+ s =ᵐ[μ] (∅ : set α) ∨ s =ᵐ[μ] univ :=
182
+ ae_empty_or_univ_of_image_ae_le' hf hs hs' $ measure_ne_top μ s
183
+
184
+ end is_finite_measure
185
+
186
+ end ergodic
0 commit comments