@@ -971,23 +971,23 @@ begin
971
971
exact snorm'_lt_top_of_snorm'_lt_top_of_exponent_le hfq_m hfq_lt_top (le_of_lt hp_pos) hpq_real,
972
972
end
973
973
974
- lemma snorm'_sum_le [second_countable_topology E] {ι} {f : ι → α → E} {s : finset ι}
974
+ section has_measurable_add
975
+ variable [has_measurable_add₂ E]
976
+
977
+ lemma snorm'_sum_le {ι} {f : ι → α → E} {s : finset ι}
975
978
(hfs : ∀ i, i ∈ s → ae_measurable (f i) μ) (hq1 : 1 ≤ q) :
976
979
snorm' (∑ i in s, f i) q μ ≤ ∑ i in s, snorm' (f i) q μ :=
977
980
finset.le_sum_of_subadditive_on_pred (λ (f : α → E), snorm' f q μ)
978
981
(λ f, ae_measurable f μ) (snorm'_zero (zero_lt_one.trans_le hq1))
979
982
(λ f g hf hg, snorm'_add_le hf hg hq1) (λ x y, ae_measurable.add) _ hfs
980
983
981
- lemma snorm_sum_le [second_countable_topology E] {ι} {f : ι → α → E} {s : finset ι}
984
+ lemma snorm_sum_le {ι} {f : ι → α → E} {s : finset ι}
982
985
(hfs : ∀ i, i ∈ s → ae_measurable (f i) μ) (hp1 : 1 ≤ p) :
983
986
snorm (∑ i in s, f i) p μ ≤ ∑ i in s, snorm (f i) p μ :=
984
987
finset.le_sum_of_subadditive_on_pred (λ (f : α → E), snorm f p μ)
985
988
(λ f, ae_measurable f μ) snorm_zero (λ f g hf hg, snorm_add_le hf hg hp1)
986
989
(λ x y, ae_measurable.add) _ hfs
987
990
988
- section second_countable_topology
989
- variable [second_countable_topology E]
990
-
991
991
lemma mem_ℒp.add {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) : mem_ℒp (f + g) p μ :=
992
992
⟨ae_measurable.add hf.1 hg.1 , snorm_add_lt_top hf hg⟩
993
993
@@ -1006,7 +1006,7 @@ begin
1006
1006
exact (hf i (s.mem_insert_self i)).add (ih (λ j hj, hf j (finset.mem_insert_of_mem hj))), },
1007
1007
end
1008
1008
1009
- end second_countable_topology
1009
+ end has_measurable_add
1010
1010
1011
1011
end borel_space
1012
1012
0 commit comments