Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit abf72e6

Browse files
committed
refactor(algebra/lie/*): rename lie_algebra.morphism --> lie_hom, lie_algebra.equiv --> lie_equiv (#6179)
Also renaming the field `map_lie` to `map_lie'` in both `lie_algebra.morphism` and `lie_module_hom` for consistency with the pattern elsewhere in Mathlib.
1 parent b3347e5 commit abf72e6

12 files changed

+103
-110
lines changed

src/algebra/lie/abelian.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ lemma function.injective.is_lie_abelian {R : Type u} {L₁ : Type v} {L₂ : Typ
5353
{f : L₁ →ₗ⁅R⁆ L₂} (h₁ : function.injective f) (h₂ : is_lie_abelian L₂) :
5454
is_lie_abelian L₁ :=
5555
{ trivial := λ x y,
56-
by { apply h₁, rw [lie_algebra.map_lie, trivial_lie_zero, lie_algebra.map_zero], } }
56+
by { apply h₁, rw [lie_hom.map_lie, trivial_lie_zero, lie_hom.map_zero], } }
5757

5858
lemma function.surjective.is_lie_abelian {R : Type u} {L₁ : Type v} {L₂ : Type w}
5959
[comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂]
@@ -63,7 +63,7 @@ lemma function.surjective.is_lie_abelian {R : Type u} {L₁ : Type v} {L₂ : Ty
6363
begin
6464
obtain ⟨u, hu⟩ := h₁ x, rw ← hu,
6565
obtain ⟨v, hv⟩ := h₁ y, rw ← hv,
66-
rw [← lie_algebra.map_lie, trivial_lie_zero, lie_algebra.map_zero],
66+
rw [← lie_hom.map_lie, trivial_lie_zero, lie_hom.map_zero],
6767
end }
6868

6969
lemma lie_abelian_iff_equiv_lie_abelian {R : Type u} {L₁ : Type v} {L₂ : Type w}
@@ -101,7 +101,7 @@ protected def ker : lie_ideal R L := (to_endomorphism R L M).ker
101101
@[simp] protected lemma mem_ker (x : L) : x ∈ lie_module.ker R L M ↔ ∀ (m : M), ⁅x, m⁆ = 0 :=
102102
begin
103103
dunfold lie_module.ker,
104-
simp only [lie_algebra.morphism.mem_ker, linear_map.ext_iff, linear_map.zero_apply,
104+
simp only [lie_hom.mem_ker, linear_map.ext_iff, linear_map.zero_apply,
105105
to_endomorphism_apply_apply],
106106
end
107107

src/algebra/lie/basic.lean

Lines changed: 47 additions & 51 deletions
Original file line numberDiff line numberDiff line change
@@ -19,8 +19,8 @@ modules, morphisms and equivalences, as well as various lemmas to make these def
1919
* `lie_algebra`
2020
* `lie_ring_module`
2121
* `lie_module`
22-
* `lie_algebra.morphism`
23-
* `lie_algebra.equiv`
22+
* `lie_hom`
23+
* `lie_equiv`
2424
* `lie_module_hom`
2525
* `lie_module_equiv`
2626
@@ -133,107 +133,105 @@ by { rw [← neg_neg ⁅x, y⁆, lie_neg z, lie_skew y x, ← lie_skew, lie_lie]
133133

134134
end basic_properties
135135

136-
namespace lie_algebra
137-
138136
set_option old_structure_cmd true
139137
/-- A morphism of Lie algebras is a linear map respecting the bracket operations. -/
140-
structure morphism (R : Type u) (L : Type v) (L' : Type w)
138+
structure lie_hom (R : Type u) (L : Type v) (L' : Type w)
141139
[comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L']
142-
extends linear_map R L L' :=
143-
(map_lie : ∀ {x y : L}, to_fun ⁅x, y⁆ = ⁅to_fun x, to_fun y⁆)
140+
extends L →ₗ[R] L' :=
141+
(map_lie' : ∀ {x y : L}, to_fun ⁅x, y⁆ = ⁅to_fun x, to_fun y⁆)
144142

145-
attribute [nolint doc_blame] lie_algebra.morphism.to_linear_map
143+
attribute [nolint doc_blame] lie_hom.to_linear_map
146144

147-
notation L ` →ₗ⁅`:25 R:25 `⁆ `:0 L':0 := morphism R L L'
145+
notation L ` →ₗ⁅`:25 R:25 `⁆ `:0 L':0 := lie_hom R L L'
148146

149-
section morphism_properties
147+
namespace lie_hom
150148

151149
variables {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁}
152150
variables [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃]
153151
variables [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃]
154152

155-
instance : has_coe (L₁ →ₗ⁅R⁆ L₂) (L₁ →ₗ[R] L₂) := ⟨morphism.to_linear_map⟩
153+
instance : has_coe (L₁ →ₗ⁅R⁆ L₂) (L₁ →ₗ[R] L₂) := ⟨lie_hom.to_linear_map⟩
156154

157155
/-- see Note [function coercion] -/
158-
instance : has_coe_to_fun (L₁ →ₗ⁅R⁆ L₂) := ⟨_, morphism.to_fun⟩
156+
instance : has_coe_to_fun (L₁ →ₗ⁅R⁆ L₂) := ⟨_, lie_hom.to_fun⟩
159157

160-
initialize_simps_projections lie_algebra.morphism (to_fun → apply)
158+
initialize_simps_projections lie_hom (to_fun → apply)
161159

162160
@[simp] lemma coe_mk (f : L₁ → L₂) (h₁ h₂ h₃) :
163161
((⟨f, h₁, h₂, h₃⟩ : L₁ →ₗ⁅R⁆ L₂) : L₁ → L₂) = f := rfl
164162

165163
@[simp, norm_cast] lemma coe_to_linear_map (f : L₁ →ₗ⁅R⁆ L₂) : ((f : L₁ →ₗ[R] L₂) : L₁ → L₂) = f :=
166164
rfl
167165

168-
@[simp] lemma morphism.map_smul (f : L₁ →ₗ⁅R⁆ L₂) (c : R) (x : L₁) : f (c • x) = c • f x :=
166+
@[simp] lemma map_smul (f : L₁ →ₗ⁅R⁆ L₂) (c : R) (x : L₁) : f (c • x) = c • f x :=
169167
linear_map.map_smul (f : L₁ →ₗ[R] L₂) c x
170168

171-
@[simp] lemma morphism.map_add (f : L₁ →ₗ⁅R⁆ L₂) (x y : L₁) : f (x + y) = (f x) + (f y) :=
169+
@[simp] lemma map_add (f : L₁ →ₗ⁅R⁆ L₂) (x y : L₁) : f (x + y) = (f x) + (f y) :=
172170
linear_map.map_add (f : L₁ →ₗ[R] L₂) x y
173171

174-
@[simp] lemma map_lie (f : L₁ →ₗ⁅R⁆ L₂) (x y : L₁) : f ⁅x, y⁆ = ⁅f x, f y⁆ := morphism.map_lie f
172+
@[simp] lemma map_lie (f : L₁ →ₗ⁅R⁆ L₂) (x y : L₁) : f ⁅x, y⁆ = ⁅f x, f y⁆ := lie_hom.map_lie' f
175173

176174
@[simp] lemma map_zero (f : L₁ →ₗ⁅R⁆ L₂) : f 0 = 0 := (f : L₁ →ₗ[R] L₂).map_zero
177175

178176
/-- The constant 0 map is a Lie algebra morphism. -/
179-
instance : has_zero (L₁ →ₗ⁅R⁆ L₂) := ⟨{ map_lie := by simp, ..(0 : L₁ →ₗ[R] L₂)}⟩
177+
instance : has_zero (L₁ →ₗ⁅R⁆ L₂) := ⟨{ map_lie' := by simp, ..(0 : L₁ →ₗ[R] L₂)}⟩
180178

181179
/-- The identity map is a Lie algebra morphism. -/
182-
instance : has_one (L₁ →ₗ⁅R⁆ L₁) := ⟨{ map_lie := by simp, ..(1 : L₁ →ₗ[R] L₁)}⟩
180+
instance : has_one (L₁ →ₗ⁅R⁆ L₁) := ⟨{ map_lie' := by simp, ..(1 : L₁ →ₗ[R] L₁)}⟩
183181

184182
instance : inhabited (L₁ →ₗ⁅R⁆ L₂) := ⟨0
185183

186-
lemma morphism.coe_injective : function.injective (λ f : L₁ →ₗ⁅R⁆ L₂, show L₁ → L₂, from f) :=
184+
lemma coe_injective : function.injective (λ f : L₁ →ₗ⁅R⁆ L₂, show L₁ → L₂, from f) :=
187185
by rintro ⟨f, _⟩ ⟨g, _⟩ ⟨h⟩; congr
188186

189-
@[ext] lemma morphism.ext {f g : L₁ →ₗ⁅R⁆ L₂} (h : ∀ x, f x = g x) : f = g :=
190-
morphism.coe_injective $ funext h
187+
@[ext] lemma ext {f g : L₁ →ₗ⁅R⁆ L₂} (h : ∀ x, f x = g x) : f = g :=
188+
coe_injective $ funext h
191189

192-
lemma morphism.ext_iff {f g : L₁ →ₗ⁅R⁆ L₂} : f = g ↔ ∀ x, f x = g x :=
193-
by { rintro rfl x, refl }, morphism.ext⟩
190+
lemma ext_iff {f g : L₁ →ₗ⁅R⁆ L₂} : f = g ↔ ∀ x, f x = g x :=
191+
by { rintro rfl x, refl }, ext⟩
194192

195193
/-- The composition of morphisms is a morphism. -/
196-
def morphism.comp (f : L₂ →ₗ⁅R⁆ L₃) (g : L₁ →ₗ⁅R⁆ L₂) : L₁ →ₗ⁅R⁆ L₃ :=
197-
{ map_lie := λ x y, by { change f (g ⁅x, y⁆) = ⁅f (g x), f (g y)⁆, rw [map_lie, map_lie], },
194+
def comp (f : L₂ →ₗ⁅R⁆ L₃) (g : L₁ →ₗ⁅R⁆ L₂) : L₁ →ₗ⁅R⁆ L₃ :=
195+
{ map_lie' := λ x y, by { change f (g ⁅x, y⁆) = ⁅f (g x), f (g y)⁆, rw [map_lie, map_lie], },
198196
..linear_map.comp f.to_linear_map g.to_linear_map }
199197

200-
@[simp] lemma morphism.comp_apply (f : L₂ →ₗ⁅R⁆ L₃) (g : L₁ →ₗ⁅R⁆ L₂) (x : L₁) :
198+
@[simp] lemma comp_apply (f : L₂ →ₗ⁅R⁆ L₃) (g : L₁ →ₗ⁅R⁆ L₂) (x : L₁) :
201199
f.comp g x = f (g x) := rfl
202200

203201
@[norm_cast]
204-
lemma morphism.comp_coe (f : L₂ →ₗ⁅R⁆ L₃) (g : L₁ →ₗ⁅R⁆ L₂) :
202+
lemma comp_coe (f : L₂ →ₗ⁅R⁆ L₃) (g : L₁ →ₗ⁅R⁆ L₂) :
205203
(f : L₂ → L₃) ∘ (g : L₁ → L₂) = f.comp g := rfl
206204

207205
/-- The inverse of a bijective morphism is a morphism. -/
208-
def morphism.inverse (f : L₁ →ₗ⁅R⁆ L₂) (g : L₂ → L₁)
206+
def inverse (f : L₁ →ₗ⁅R⁆ L₂) (g : L₂ → L₁)
209207
(h₁ : function.left_inverse g f) (h₂ : function.right_inverse g f) : L₂ →ₗ⁅R⁆ L₁ :=
210-
{ map_lie := λ x y,
208+
{ map_lie' := λ x y,
211209
calc g ⁅x, y⁆ = g ⁅f (g x), f (g y)⁆ : by { conv_lhs { rw [←h₂ x, ←h₂ y], }, }
212210
... = g (f ⁅g x, g y⁆) : by rw map_lie
213211
... = ⁅g x, g y⁆ : (h₁ _),
214212
..linear_map.inverse f.to_linear_map g h₁ h₂ }
215213

216-
end morphism_properties
214+
end lie_hom
217215

218216
/-- An equivalence of Lie algebras is a morphism which is also a linear equivalence. We could
219217
instead define an equivalence to be a morphism which is also a (plain) equivalence. However it is
220218
more convenient to define via linear equivalence to get `.to_linear_equiv` for free. -/
221-
structure equiv (R : Type u) (L : Type v) (L' : Type w)
219+
structure lie_equiv (R : Type u) (L : Type v) (L' : Type w)
222220
[comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L']
223221
extends L →ₗ⁅R⁆ L', L ≃ₗ[R] L'
224222

225-
attribute [nolint doc_blame] lie_algebra.equiv.to_morphism
226-
attribute [nolint doc_blame] lie_algebra.equiv.to_linear_equiv
223+
attribute [nolint doc_blame] lie_equiv.to_lie_hom
224+
attribute [nolint doc_blame] lie_equiv.to_linear_equiv
227225

228-
notation L ` ≃ₗ⁅`:50 R `⁆ ` L' := equiv R L L'
226+
notation L ` ≃ₗ⁅`:50 R `⁆ ` L' := lie_equiv R L L'
229227

230-
namespace equiv
228+
namespace lie_equiv
231229

232230
variables {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁}
233231
variables [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃]
234232
variables [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃]
235233

236-
instance has_coe_to_lie_hom : has_coe (L₁ ≃ₗ⁅R⁆ L₂) (L₁ →ₗ⁅R⁆ L₂) := ⟨to_morphism
234+
instance has_coe_to_lie_hom : has_coe (L₁ ≃ₗ⁅R⁆ L₂) (L₁ →ₗ⁅R⁆ L₂) := ⟨to_lie_hom
237235
instance has_coe_to_linear_equiv : has_coe (L₁ ≃ₗ⁅R⁆ L₂) (L₁ ≃ₗ[R] L₂) := ⟨to_linear_equiv⟩
238236

239237
/-- see Note [function coercion] -/
@@ -246,7 +244,7 @@ instance : has_coe_to_fun (L₁ ≃ₗ⁅R⁆ L₂) := ⟨_, to_fun⟩
246244
((e : L₁ ≃ₗ[R] L₂) : L₁ → L₂) = e := rfl
247245

248246
instance : has_one (L₁ ≃ₗ⁅R⁆ L₁) :=
249-
⟨{ map_lie := λ x y,
247+
⟨{ map_lie' := λ x y,
250248
by { change ((1 : L₁→ₗ[R] L₁) ⁅x, y⁆) = ⁅(1 : L₁→ₗ[R] L₁) x, (1 : L₁→ₗ[R] L₁) y⁆, simp, },
251249
..(1 : L₁ ≃ₗ[R] L₁)}⟩
252250

@@ -263,7 +261,7 @@ def refl : L₁ ≃ₗ⁅R⁆ L₁ := 1
263261
/-- Lie algebra equivalences are symmetric. -/
264262
@[symm]
265263
def symm (e : L₁ ≃ₗ⁅R⁆ L₂) : L₂ ≃ₗ⁅R⁆ L₁ :=
266-
{ ..morphism.inverse e.to_morphism e.inv_fun e.left_inv e.right_inv,
264+
{ ..lie_hom.inverse e.to_lie_hom e.inv_fun e.left_inv e.right_inv,
267265
..e.to_linear_equiv.symm }
268266

269267
@[simp] lemma symm_symm (e : L₁ ≃ₗ⁅R⁆ L₂) : e.symm.symm = e :=
@@ -278,7 +276,7 @@ by { cases e, refl, }
278276
/-- Lie algebra equivalences are transitive. -/
279277
@[trans]
280278
def trans (e₁ : L₁ ≃ₗ⁅R⁆ L₂) (e₂ : L₂ ≃ₗ⁅R⁆ L₃) : L₁ ≃ₗ⁅R⁆ L₃ :=
281-
{ ..morphism.comp e₂.to_morphism e₁.to_morphism,
279+
{ ..lie_hom.comp e₂.to_lie_hom e₁.to_lie_hom,
282280
..linear_equiv.trans e₁.to_linear_equiv e₂.to_linear_equiv }
283281

284282
@[simp] lemma trans_apply (e₁ : L₁ ≃ₗ⁅R⁆ L₂) (e₂ : L₂ ≃ₗ⁅R⁆ L₃) (x : L₁) :
@@ -296,9 +294,7 @@ e.to_linear_equiv.injective
296294
lemma surjective (e : L₁ ≃ₗ⁅R⁆ L₂) : function.surjective ((e : L₁ →ₗ⁅R⁆ L₂) : L₁ → L₂) :=
297295
e.to_linear_equiv.surjective
298296

299-
end equiv
300-
301-
end lie_algebra
297+
end lie_equiv
302298

303299
section lie_module_morphisms
304300

@@ -314,7 +310,7 @@ set_option old_structure_cmd true
314310
/-- A morphism of Lie algebra modules is a linear map which commutes with the action of the Lie
315311
algebra. -/
316312
structure lie_module_hom extends M →ₗ[R] N :=
317-
(map_lie : ∀ {x : L} {m : M}, to_fun ⁅x, m⁆ = ⁅x, to_fun m⁆)
313+
(map_lie' : ∀ {x : L} {m : M}, to_fun ⁅x, m⁆ = ⁅x, to_fun m⁆)
318314

319315
attribute [nolint doc_blame] lie_module_hom.to_linear_map
320316

@@ -335,14 +331,14 @@ instance : has_coe_to_fun (M →ₗ⁅R,L⁆ N) := ⟨_, lie_module_hom.to_fun
335331
@[simp, norm_cast] lemma coe_to_linear_map (f : M →ₗ⁅R,L⁆ N) : ((f : M →ₗ[R] N) : M → N) = f :=
336332
rfl
337333

338-
@[simp] lemma map_lie' (f : M →ₗ⁅R,L⁆ N) (x : L) (m : M) : f ⁅x, m⁆ = ⁅x, f m⁆ :=
339-
lie_module_hom.map_lie f
334+
@[simp] lemma map_lie (f : M →ₗ⁅R,L⁆ N) (x : L) (m : M) : f ⁅x, m⁆ = ⁅x, f m⁆ :=
335+
lie_module_hom.map_lie' f
340336

341337
/-- The constant 0 map is a Lie module morphism. -/
342-
instance : has_zero (M →ₗ⁅R,L⁆ N) := ⟨{ map_lie := by simp, ..(0 : M →ₗ[R] N) }⟩
338+
instance : has_zero (M →ₗ⁅R,L⁆ N) := ⟨{ map_lie' := by simp, ..(0 : M →ₗ[R] N) }⟩
343339

344340
/-- The identity map is a Lie module morphism. -/
345-
instance : has_one (M →ₗ⁅R,L⁆ M) := ⟨{ map_lie := by simp, ..(1 : M →ₗ[R] M) }⟩
341+
instance : has_one (M →ₗ⁅R,L⁆ M) := ⟨{ map_lie' := by simp, ..(1 : M →ₗ[R] M) }⟩
346342

347343
instance : inhabited (M →ₗ⁅R,L⁆ N) := ⟨0
348344

@@ -357,7 +353,7 @@ lemma ext_iff {f g : M →ₗ⁅R,L⁆ N} : f = g ↔ ∀ m, f m = g m :=
357353

358354
/-- The composition of Lie module morphisms is a morphism. -/
359355
def comp (f : N →ₗ⁅R,L⁆ P) (g : M →ₗ⁅R,L⁆ N) : M →ₗ⁅R,L⁆ P :=
360-
{ map_lie := λ x m, by { change f (g ⁅x, m⁆) = ⁅x, f (g m)⁆, rw [map_lie', map_lie'], },
356+
{ map_lie' := λ x m, by { change f (g ⁅x, m⁆) = ⁅x, f (g m)⁆, rw [map_lie, map_lie], },
361357
..linear_map.comp f.to_linear_map g.to_linear_map }
362358

363359
@[simp] lemma comp_apply (f : N →ₗ⁅R,L⁆ P) (g : M →ₗ⁅R,L⁆ N) (m : M) :
@@ -369,9 +365,9 @@ def comp (f : N →ₗ⁅R,L⁆ P) (g : M →ₗ⁅R,L⁆ N) : M →ₗ⁅R,L⁆
369365
/-- The inverse of a bijective morphism of Lie modules is a morphism of Lie modules. -/
370366
def inverse (f : M →ₗ⁅R,L⁆ N) (g : N → M)
371367
(h₁ : function.left_inverse g f) (h₂ : function.right_inverse g f) : N →ₗ⁅R,L⁆ M :=
372-
{ map_lie := λ x n,
368+
{ map_lie' := λ x n,
373369
calc g ⁅x, n⁆ = g ⁅x, f (g n)⁆ : by rw h₂
374-
... = g (f ⁅x, g n⁆) : by rw map_lie'
370+
... = g (f ⁅x, g n⁆) : by rw map_lie
375371
... = ⁅x, g n⁆ : (h₁ _),
376372
..linear_map.inverse f.to_linear_map g h₁ h₂ }
377373

@@ -402,7 +398,7 @@ instance : has_coe_to_fun (M ≃ₗ⁅R,L⁆ N) := ⟨_, to_fun⟩
402398
@[simp, norm_cast] lemma coe_to_linear_equiv (e : M ≃ₗ⁅R,L⁆ N) : ((e : M ≃ₗ[R] N) : M → N) = e :=
403399
rfl
404400

405-
instance : has_one (M ≃ₗ⁅R,L⁆ M) := ⟨{ map_lie := λ x m, rfl, ..(1 : M ≃ₗ[R] M) }⟩
401+
instance : has_one (M ≃ₗ⁅R,L⁆ M) := ⟨{ map_lie' := λ x m, rfl, ..(1 : M ≃ₗ[R] M) }⟩
406402

407403
@[simp] lemma one_apply (m : M) : (1 : (M ≃ₗ⁅R,L⁆ M)) m = m := rfl
408404

src/algebra/lie/classical.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -207,14 +207,14 @@ noncomputable def so_indefinite_equiv {i : R} (hi : i*i = -1) : so' p q R ≃ₗ
207207
begin
208208
apply (skew_adjoint_matrices_lie_subalgebra_equiv
209209
(indefinite_diagonal p q R) (Pso p q R i) (is_unit_Pso p q R hi)).trans,
210-
apply lie_algebra.equiv.of_eq,
210+
apply lie_equiv.of_eq,
211211
ext A, rw indefinite_diagonal_transform p q R hi, refl,
212212
end
213213

214214
lemma so_indefinite_equiv_apply {i : R} (hi : i*i = -1) (A : so' p q R) :
215215
(so_indefinite_equiv p q R hi A : matrix (p ⊕ q) (p ⊕ q) R) =
216216
(Pso p q R i)⁻¹ ⬝ (A : matrix (p ⊕ q) (p ⊕ q) R) ⬝ (Pso p q R i) :=
217-
by erw [lie_algebra.equiv.trans_apply, lie_algebra.equiv.of_eq_apply,
217+
by erw [lie_equiv.trans_apply, lie_equiv.of_eq_apply,
218218
skew_adjoint_matrices_lie_subalgebra_equiv_apply]
219219

220220
/-- A matrix defining a canonical even-rank symmetric bilinear form.
@@ -278,7 +278,7 @@ noncomputable def type_D_equiv_so' [invertible (2 : R)] :
278278
type_D l R ≃ₗ⁅R⁆ so' l l R :=
279279
begin
280280
apply (skew_adjoint_matrices_lie_subalgebra_equiv (JD l R) (PD l R) (is_unit_PD l R)).trans,
281-
apply lie_algebra.equiv.of_eq,
281+
apply lie_equiv.of_eq,
282282
ext A,
283283
rw [JD_transform, ← unit_of_invertible_val (2 : R), lie_subalgebra.mem_coe,
284284
mem_skew_adjoint_matrices_lie_subalgebra_unit_smul],
@@ -359,7 +359,7 @@ begin
359359
apply (skew_adjoint_matrices_lie_subalgebra_equiv_transpose
360360
(indefinite_diagonal (unit ⊕ l) l R)
361361
(matrix.reindex_alg_equiv (equiv.sum_assoc punit l l)) (matrix.reindex_transpose _ _)).trans,
362-
apply lie_algebra.equiv.of_eq,
362+
apply lie_equiv.of_eq,
363363
ext A,
364364
rw [JB_transform, ← unit_of_invertible_val (2 : R), lie_subalgebra.mem_coe,
365365
lie_subalgebra.mem_coe, mem_skew_adjoint_matrices_lie_subalgebra_unit_smul],

src/algebra/lie/direct_sum.lean

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ variables (R ι L M)
5252

5353
/-- The inclusion of each component into a direct sum as a morphism of Lie modules. -/
5454
def lie_module_of [decidable_eq ι] (j : ι) : M j →ₗ⁅R,L⁆ ⨁ i, M i :=
55-
{ map_lie := λ x m,
55+
{ map_lie' := λ x m,
5656
begin
5757
ext i, by_cases h : j = i,
5858
{ rw ← h, simp, },
@@ -62,7 +62,7 @@ def lie_module_of [decidable_eq ι] (j : ι) : M j →ₗ⁅R,L⁆ ⨁ i, M i :=
6262

6363
/-- The projection map onto one component, as a morphism of Lie modules. -/
6464
def lie_module_component (j : ι) : (⨁ i, M i) →ₗ⁅R,L⁆ M j :=
65-
{ map_lie := λ x m,
65+
{ map_lie' := λ x m,
6666
by simp only [component, lapply_apply, lie_module_bracket_apply, linear_map.to_fun_eq_coe],
6767
..component R ι M j }
6868

@@ -96,15 +96,16 @@ variables (R ι L)
9696

9797
/-- The inclusion of each component into the direct sum as morphism of Lie algebras. -/
9898
def lie_algebra_of [decidable_eq ι] (j : ι) : L j →ₗ⁅R⁆ ⨁ i, L i :=
99-
{ map_lie := λ x y, by
99+
{ map_lie' := λ x y, by
100100
{ ext i, by_cases h : j = i,
101101
{ rw ← h, simp, },
102102
{ simp [lof, single_eq_of_ne h], }, },
103103
..lof R ι L j, }
104104

105105
/-- The projection map onto one component, as a morphism of Lie algebras. -/
106106
def lie_algebra_component (j : ι) : (⨁ i, L i) →ₗ⁅R⁆ L j :=
107-
{ map_lie := λ x y, by simp only [component, bracket_apply, lapply_apply, linear_map.to_fun_eq_coe],
107+
{ map_lie' := λ x y,
108+
by simp only [component, bracket_apply, lapply_apply, linear_map.to_fun_eq_coe],
108109
..component R ι L j }
109110

110111
end algebras

src/algebra/lie/ideal_operations.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -167,7 +167,7 @@ begin
167167
let fy₁ : ↥(map f I₁) := ⟨f y₁, mem_map hy₁⟩,
168168
let fy₂ : ↥(map f I₂) := ⟨f y₂, mem_map hy₂⟩,
169169
change _ ∈ comap f ⁅map f I₁, map f I₂⁆,
170-
simp only [submodule.coe_mk, mem_comap, map_lie],
170+
simp only [submodule.coe_mk, mem_comap, lie_hom.map_lie],
171171
exact lie_submodule.lie_mem_lie _ _ fy₁ fy₂,
172172
end
173173

@@ -189,20 +189,20 @@ begin
189189
lie_submodule.sup_coe_to_submodule, f.ker_coe_submodule, ← linear_map.comap_map_eq,
190190
lie_submodule.lie_ideal_oper_eq_linear_span, lie_submodule.lie_ideal_oper_eq_linear_span,
191191
submodule.map_span],
192-
congr, simp only [coe_to_linear_map, set.mem_set_of_eq], ext y,
192+
congr, simp only [lie_hom.coe_to_linear_map, set.mem_set_of_eq], ext y,
193193
split,
194194
{ rintros ⟨⟨x₁, hx₁⟩, ⟨x₂, hx₂⟩, hy⟩, rw ← hy,
195195
erw [lie_submodule.mem_inf, f.mem_ideal_range_iff h] at hx₁ hx₂,
196196
obtain ⟨⟨z₁, hz₁⟩, hz₁'⟩ := hx₁, rw ← hz₁ at hz₁',
197197
obtain ⟨⟨z₂, hz₂⟩, hz₂'⟩ := hx₂, rw ← hz₂ at hz₂',
198198
use [⁅z₁, z₂⁆, ⟨z₁, hz₁'⟩, ⟨z₂, hz₂'⟩, rfl],
199-
simp only [hz₁, hz₂, submodule.coe_mk, map_lie], },
199+
simp only [hz₁, hz₂, submodule.coe_mk, lie_hom.map_lie], },
200200
{ rintros ⟨x, ⟨⟨z₁, hz₁⟩, ⟨z₂, hz₂⟩, hx⟩, hy⟩, rw [← hy, ← hx],
201201
have hz₁' : f z₁ ∈ f.ideal_range ⊓ J₁,
202202
{ rw lie_submodule.mem_inf, exact ⟨f.mem_ideal_range, hz₁⟩, },
203203
have hz₂' : f z₂ ∈ f.ideal_range ⊓ J₂,
204204
{ rw lie_submodule.mem_inf, exact ⟨f.mem_ideal_range, hz₂⟩, },
205-
use [⟨f z₁, hz₁'⟩, ⟨f z₂, hz₂'⟩], simp only [submodule.coe_mk, map_lie], },
205+
use [⟨f z₁, hz₁'⟩, ⟨f z₂, hz₂'⟩], simp only [submodule.coe_mk, lie_hom.map_lie], },
206206
end
207207

208208
lemma map_comap_bracket_eq {J₁ J₂ : lie_ideal R L'} (h : f.is_ideal_morphism) :

src/algebra/lie/matrix.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ variables {n : Type w} [decidable_eq n] [fintype n]
3535
/-- The natural equivalence between linear endomorphisms of finite free modules and square matrices
3636
is compatible with the Lie algebra structures. -/
3737
def lie_equiv_matrix' : module.End R (n → R) ≃ₗ⁅R⁆ matrix n n R :=
38-
{ map_lie := λ T S,
38+
{ map_lie' := λ T S,
3939
begin
4040
let f := @linear_map.to_matrix' R _ n n _ _ _,
4141
change f (T.comp S - S.comp T) = (f T) * (f S) - (f S) * (f T),
@@ -69,7 +69,7 @@ by simp [linear_equiv.symm_conj_apply, matrix.lie_conj, linear_map.to_matrix'_co
6969
types is an equivalence of Lie algebras. -/
7070
def matrix.reindex_lie_equiv {m : Type w₁} [decidable_eq m] [fintype m]
7171
(e : n ≃ m) : matrix n n R ≃ₗ⁅R⁆ matrix m m R :=
72-
{ map_lie := λ M N, by simp only [lie_ring.of_associative_ring_bracket, matrix.reindex_mul,
72+
{ map_lie' := λ M N, by simp only [lie_ring.of_associative_ring_bracket, matrix.reindex_mul,
7373
matrix.mul_eq_mul, linear_equiv.map_sub, linear_equiv.to_fun_apply],
7474
..(matrix.reindex_linear_equiv e e) }
7575

0 commit comments

Comments
 (0)