Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ae6f59d

Browse files
committed
feat(analysis/locally_convex/with_seminorms): pull back with_seminorms along a linear inducing (#13549)
This show that, if `f : E -> F` is linear and the topology on `F` is induced by a family of seminorms `p`, then the topology induced on `E` through `f` is induced by the seminorms `(p i) ∘ f`. - [x] depends on: #13547
1 parent ba38b47 commit ae6f59d

File tree

1 file changed

+46
-1
lines changed

1 file changed

+46
-1
lines changed

src/analysis/locally_convex/with_seminorms.lean

Lines changed: 46 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ Show that for any locally convex space there exist seminorms that induce the top
3232
seminorm, locally convex
3333
-/
3434

35-
open normed_field set seminorm
35+
open normed_field set seminorm topological_space
3636
open_locale big_operators nnreal pointwise topological_space
3737

3838
variables {𝕜 E F G ι ι' : Type*}
@@ -483,3 +483,48 @@ instance normed_space.to_locally_convex_space [normed_space ℝ E] :
483483
normed_space.to_locally_convex_space' ℝ
484484

485485
end normed_space
486+
487+
section topological_constructions
488+
489+
variables [normed_field 𝕜] [add_comm_group F] [module 𝕜 F] [add_comm_group E] [module 𝕜 E]
490+
491+
/-- The family of seminorms obtained by composing each seminorm by a linear map. -/
492+
def seminorm_family.comp (q : seminorm_family 𝕜 F ι) (f : E →ₗ[𝕜] F) :
493+
seminorm_family 𝕜 E ι :=
494+
λ i, (q i).comp f
495+
496+
lemma seminorm_family.comp_apply (q : seminorm_family 𝕜 F ι) (i : ι) (f : E →ₗ[𝕜] F) :
497+
q.comp f i = (q i).comp f :=
498+
rfl
499+
500+
lemma seminorm_family.finset_sup_comp (q : seminorm_family 𝕜 F ι) (s : finset ι)
501+
(f : E →ₗ[𝕜] F) : (s.sup q).comp f = s.sup (q.comp f) :=
502+
begin
503+
ext x,
504+
rw [seminorm.comp_apply, seminorm.finset_sup_apply, seminorm.finset_sup_apply],
505+
refl
506+
end
507+
508+
variables [topological_space F] [topological_add_group F]
509+
510+
lemma linear_map.with_seminorms_induced [hι : nonempty ι] {q : seminorm_family 𝕜 F ι}
511+
[hq : with_seminorms q] (f : E →ₗ[𝕜] F) :
512+
@with_seminorms 𝕜 E ι _ _ _ _ (q.comp f) (induced f infer_instance) :=
513+
begin
514+
letI : topological_space E := induced f infer_instance,
515+
letI : topological_add_group E := topological_add_group_induced f,
516+
rw [(q.comp f).with_seminorms_iff_nhds_eq_infi, nhds_induced, map_zero,
517+
q.with_seminorms_iff_nhds_eq_infi.mp hq, filter.comap_infi],
518+
refine infi_congr (λ i, _),
519+
exact filter.comap_comap
520+
end
521+
522+
lemma inducing.with_seminorms [hι : nonempty ι] {q : seminorm_family 𝕜 F ι}
523+
[hq : with_seminorms q] [topological_space E] {f : E →ₗ[𝕜] F} (hf : inducing f) :
524+
with_seminorms (q.comp f) :=
525+
begin
526+
rw hf.induced,
527+
exact f.with_seminorms_induced
528+
end
529+
530+
end topological_constructions

0 commit comments

Comments
 (0)