@@ -2848,27 +2848,93 @@ namespace is_compact
2848
2848
2849
2849
variables [topological_space α] [measurable_space α] {μ : measure α} {s : set α}
2850
2850
2851
- lemma is_finite_measure_of_nhds_within (hs : is_compact s) :
2852
- (∀ a ∈ s, μ.finite_at_filter (𝓝[s] a)) → μ s < ∞ :=
2853
- by simpa only [← measure.compl_mem_cofinite, measure.finite_at_filter]
2854
- using hs.compl_mem_sets_of_nhds_within
2851
+ /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
2852
+ superset of finite measure. -/
2853
+ lemma exists_open_superset_measure_lt_top' (h : is_compact s)
2854
+ (hμ : ∀ x ∈ s, μ.finite_at_filter (𝓝 x)) :
2855
+ ∃ U ⊇ s, is_open U ∧ μ U < ∞ :=
2856
+ begin
2857
+ refine is_compact.induction_on h _ _ _ _,
2858
+ { use ∅, simp [superset] },
2859
+ { rintro s t hst ⟨U, htU, hUo, hU⟩, exact ⟨U, hst.trans htU, hUo, hU⟩ },
2860
+ { rintro s t ⟨U, hsU, hUo, hU⟩ ⟨V, htV, hVo, hV⟩,
2861
+ refine ⟨U ∪ V, union_subset_union hsU htV, hUo.union hVo,
2862
+ (measure_union_le _ _).trans_lt $ ennreal.add_lt_top.2 ⟨hU, hV⟩⟩ },
2863
+ { intros x hx,
2864
+ rcases (hμ x hx).exists_mem_basis (nhds_basis_opens _) with ⟨U, ⟨hx, hUo⟩, hU⟩,
2865
+ exact ⟨U, nhds_within_le_nhds (hUo.mem_nhds hx), U, subset.rfl, hUo, hU⟩ }
2866
+ end
2867
+
2868
+ /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
2869
+ finite measure. -/
2870
+ lemma exists_open_superset_measure_lt_top (h : is_compact s)
2871
+ (μ : measure α) [is_locally_finite_measure μ] :
2872
+ ∃ U ⊇ s, is_open U ∧ μ U < ∞ :=
2873
+ h.exists_open_superset_measure_lt_top' $ λ x hx, μ.finite_at_nhds x
2874
+
2875
+ lemma measure_lt_top_of_nhds_within (h : is_compact s) (hμ : ∀ x ∈ s, μ.finite_at_filter (𝓝[s] x)) :
2876
+ μ s < ∞ :=
2877
+ is_compact.induction_on h (by simp) (λ s t hst ht, (measure_mono hst).trans_lt ht)
2878
+ (λ s t hs ht, (measure_union_le s t).trans_lt (ennreal.add_lt_top.2 ⟨hs, ht⟩)) hμ
2855
2879
2856
- lemma is_finite_measure [is_locally_finite_measure μ] (hs : is_compact s) : μ s < ∞ :=
2857
- hs.is_finite_measure_of_nhds_within $ λ a ha, μ.finite_at_nhds_within _ _
2880
+ lemma measure_lt_top (h : is_compact s) {μ : measure α} [is_locally_finite_measure μ] :
2881
+ μ s < ∞ :=
2882
+ h.measure_lt_top_of_nhds_within $ λ x hx, μ.finite_at_nhds_within _ _
2858
2883
2859
2884
lemma measure_zero_of_nhds_within (hs : is_compact s) :
2860
2885
(∀ a ∈ s, ∃ t ∈ 𝓝[s] a, μ t = 0 ) → μ s = 0 :=
2861
2886
by simpa only [← compl_mem_ae_iff] using hs.compl_mem_sets_of_nhds_within
2862
2887
2863
2888
end is_compact
2864
2889
2865
- lemma metric.bounded.is_finite_measure [metric_space α] [proper_space α]
2890
+ /-- Compact covering of a `σ`-compact topological space as
2891
+ `measure_theory.measure.finite_spanning_sets_in`. -/
2892
+ def measure_theory.measure.finite_spanning_sets_in_compact [topological_space α]
2893
+ [sigma_compact_space α] {m : measurable_space α} (μ : measure α) [is_locally_finite_measure μ] :
2894
+ μ.finite_spanning_sets_in {K | is_compact K} :=
2895
+ { set := compact_covering α,
2896
+ set_mem := is_compact_compact_covering α,
2897
+ finite := λ n, (is_compact_compact_covering α n).measure_lt_top,
2898
+ spanning := Union_compact_covering α }
2899
+
2900
+ /-- A locally finite measure on a `σ`-compact topological space admits a finite spanning sequence
2901
+ of open sets. -/
2902
+ def measure_theory.measure.finite_spanning_sets_in_open [topological_space α]
2903
+ [sigma_compact_space α] {m : measurable_space α} (μ : measure α) [is_locally_finite_measure μ] :
2904
+ μ.finite_spanning_sets_in {K | is_open K} :=
2905
+ { set := λ n, ((is_compact_compact_covering α n).exists_open_superset_measure_lt_top μ).some,
2906
+ set_mem := λ n,
2907
+ ((is_compact_compact_covering α n).exists_open_superset_measure_lt_top μ).some_spec.snd.1 ,
2908
+ finite := λ n,
2909
+ ((is_compact_compact_covering α n).exists_open_superset_measure_lt_top μ).some_spec.snd.2 ,
2910
+ spanning := eq_univ_of_subset (Union_subset_Union $ λ n,
2911
+ ((is_compact_compact_covering α n).exists_open_superset_measure_lt_top μ).some_spec.fst)
2912
+ (Union_compact_covering α) }
2913
+
2914
+ section measure_Ixx
2915
+
2916
+ variables [conditionally_complete_linear_order α] [topological_space α] [order_topology α]
2917
+ {m : measurable_space α} {μ : measure α} [is_locally_finite_measure μ] {a b : α}
2918
+
2919
+ lemma measure_Icc_lt_top : μ (Icc a b) < ∞ := is_compact_Icc.measure_lt_top
2920
+
2921
+ lemma measure_Ico_lt_top : μ (Ico a b) < ∞ :=
2922
+ (measure_mono Ico_subset_Icc_self).trans_lt measure_Icc_lt_top
2923
+
2924
+ lemma measure_Ioc_lt_top : μ (Ioc a b) < ∞ :=
2925
+ (measure_mono Ioc_subset_Icc_self).trans_lt measure_Icc_lt_top
2926
+
2927
+ lemma measure_Ioo_lt_top : μ (Ioo a b) < ∞ :=
2928
+ (measure_mono Ioo_subset_Icc_self).trans_lt measure_Icc_lt_top
2929
+
2930
+ end measure_Ixx
2931
+
2932
+ lemma metric.bounded.measure_lt_top [metric_space α] [proper_space α]
2866
2933
[measurable_space α] {μ : measure α} [is_locally_finite_measure μ] {s : set α}
2867
2934
(hs : metric.bounded s) :
2868
2935
μ s < ∞ :=
2869
2936
(measure_mono subset_closure).trans_lt (metric.compact_iff_closed_bounded.2
2870
- ⟨is_closed_closure, metric.bounded_closure_of_bounded hs⟩).is_finite_measure
2871
-
2937
+ ⟨is_closed_closure, metric.bounded_closure_of_bounded hs⟩).measure_lt_top
2872
2938
2873
2939
section piecewise
2874
2940
0 commit comments