@@ -179,7 +179,7 @@ theorem Union_subset {s : ι → set β} {t : set β} (h : ∀ i, s i ⊆ t) : (
179
179
-- TODO: should be simpler when sets' order is based on lattices
180
180
@supr_le (set β) _ _ _ _ h
181
181
182
- theorem Union_subset_iff {s : ι → set β} {t : set β} : (⋃ i, s i) ⊆ t ↔ (∀ i, s i ⊆ t) :=
182
+ @[simp] theorem Union_subset_iff {s : ι → set β} {t : set β} : (⋃ i, s i) ⊆ t ↔ (∀ i, s i ⊆ t) :=
183
183
⟨λ h i, subset.trans (le_supr s _) h, Union_subset⟩
184
184
185
185
theorem mem_Inter_of_mem {x : β} {s : ι → set β} : (∀ i, x ∈ s i) → (x ∈ ⋂ i, s i) :=
@@ -188,7 +188,7 @@ mem_Inter.2
188
188
theorem subset_Inter {t : set β} {s : ι → set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i :=
189
189
@le_infi (set β) _ _ _ _ h
190
190
191
- theorem subset_Inter_iff {t : set β} {s : ι → set β} : t ⊆ (⋂ i, s i) ↔ ∀ i, t ⊆ s i :=
191
+ @[simp] theorem subset_Inter_iff {t : set β} {s : ι → set β} : t ⊆ (⋂ i, s i) ↔ ∀ i, t ⊆ s i :=
192
192
@le_infi_iff (set β) _ _ _ _
193
193
194
194
theorem subset_Union : ∀ (s : ι → set β) (i : ι), s i ⊆ (⋃ i, s i) := le_supr
@@ -677,12 +677,15 @@ subset.trans h₁ (subset_sUnion_of_mem h₂)
677
677
theorem sUnion_subset {S : set (set α)} {t : set α} (h : ∀ t' ∈ S, t' ⊆ t) : (⋃₀ S) ⊆ t :=
678
678
Sup_le h
679
679
680
- theorem sUnion_subset_iff {s : set (set α)} {t : set α} : ⋃₀ s ⊆ t ↔ ∀ t' ∈ s, t' ⊆ t :=
681
- ⟨λ h t' ht', subset.trans (subset_sUnion_of_mem ht') h, sUnion_subset⟩
680
+ @[simp] theorem sUnion_subset_iff {s : set (set α)} {t : set α} : ⋃₀ s ⊆ t ↔ ∀ t' ∈ s, t' ⊆ t :=
681
+ @Sup_le_iff (set α) _ _ _
682
682
683
683
theorem subset_sInter {S : set (set α)} {t : set α} (h : ∀ t' ∈ S, t ⊆ t') : t ⊆ (⋂₀ S) :=
684
684
le_Inf h
685
685
686
+ @[simp] theorem subset_sInter_iff {S : set (set α)} {t : set α} : t ⊆ (⋂₀ S) ↔ ∀ t' ∈ S, t ⊆ t' :=
687
+ @le_Inf_iff (set α) _ _ _
688
+
686
689
theorem sUnion_subset_sUnion {S T : set (set α)} (h : S ⊆ T) : ⋃₀ S ⊆ ⋃₀ T :=
687
690
sUnion_subset $ λ s hs, subset_sUnion_of_mem (h hs)
688
691
0 commit comments