@@ -30,8 +30,8 @@ set_option old_structure_cmd true
30
30
31
31
open preorder set lattice
32
32
33
- universes u v
34
- variables {α : Type u} {β : Type v}
33
+ universes u v w
34
+ variables {α : Type u} {β : Type v} {ι : Type w}
35
35
36
36
section preorder
37
37
variables [preorder α] [preorder β] {s t : set α} {a b : α}
@@ -484,7 +484,7 @@ lemma csupr_le [ne : nonempty β] {f : β → α} {c : α} (H : ∀x, f x ≤ c)
484
484
cSup_le (by simp [not_not_intro ne]) (by rwa forall_range_iff)
485
485
486
486
/--The indexed supremum of a function is bounded below by the value taken at one point-/
487
- lemma le_csupr [ne : nonempty β] {f : β → α} (H : bdd_above (range f)) {c : β} : f c ≤ supr f :=
487
+ lemma le_csupr {f : β → α} (H : bdd_above (range f)) {c : β} : f c ≤ supr f :=
488
488
le_cSup H (mem_range_self _)
489
489
490
490
/--The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
@@ -506,7 +506,7 @@ lemma le_cinfi [ne : nonempty β] {f : β → α} {c : α} (H : ∀x, c ≤ f x)
506
506
le_cInf (by simp [not_not_intro ne]) (by rwa forall_range_iff)
507
507
508
508
/--The indexed infimum of a function is bounded above by the value taken at one point-/
509
- lemma cinfi_le [ne : nonempty β] {f : β → α} (H : bdd_below (range f)) {c : β} : infi f ≤ f c :=
509
+ lemma cinfi_le {f : β → α} (H : bdd_below (range f)) {c : β} : infi f ≤ f c :=
510
510
cInf_le H (mem_range_self _)
511
511
512
512
lemma is_lub_cSup {s : set α} (ne : s ≠ ∅) (H : bdd_above s) : is_lub s (Sup s) :=
@@ -515,6 +515,22 @@ lemma is_lub_cSup {s : set α} (ne : s ≠ ∅) (H : bdd_above s) : is_lub s (Su
515
515
lemma is_glb_cInf {s : set α} (ne : s ≠ ∅) (H : bdd_below s) : is_glb s (Inf s) :=
516
516
⟨assume x, cInf_le H, assume x, le_cInf ne⟩
517
517
518
+ @[simp] theorem cinfi_const [nonempty ι] {a : α} : (⨅ b:ι, a) = a :=
519
+ begin
520
+ rcases exists_mem_of_nonempty ι with ⟨x, _⟩,
521
+ refine le_antisymm (@cinfi_le _ _ _ _ _ x) (le_cinfi (λi, _root_.le_refl _)),
522
+ rw range_const,
523
+ exact bdd_below_singleton
524
+ end
525
+
526
+ @[simp] theorem csupr_const [nonempty ι] {a : α} : (⨆ b:ι, a) = a :=
527
+ begin
528
+ rcases exists_mem_of_nonempty ι with ⟨x, _⟩,
529
+ refine le_antisymm (csupr_le (λi, _root_.le_refl _)) (@le_csupr _ _ _ (λ b:ι, a) _ x),
530
+ rw range_const,
531
+ exact bdd_above_singleton
532
+ end
533
+
518
534
end conditionally_complete_lattice
519
535
520
536
0 commit comments