Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit d9dcf69

Browse files
committed
feat(topology/topological_fiber_bundle): a new standard construction for topological fiber bundles (#7935)
In this PR we implement a new standard construction for topological fiber bundles: namely a structure that permits to define a fiber bundle when trivializations are given as local equivalences but there is not yet a topology on the total space. The total space is hence given a topology in such a way that there is a fiber bundle structure for which the local equivalences are also local homeomorphism and hence local trivializations.
1 parent 2f27046 commit d9dcf69

File tree

2 files changed

+266
-90
lines changed

2 files changed

+266
-90
lines changed

src/topology/continuous_on.lean

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -87,6 +87,22 @@ begin
8787
exact (nhds a).sets_of_superset ((nhds a).inter_sets Hw h1) hw,
8888
end
8989

90+
lemma preimage_nhds_within_coinduced' {π : α → β} {s : set β} {t : set α} {a : α}
91+
(h : a ∈ t) (ht : is_open t)
92+
(hs : s ∈ @nhds β (topological_space.coinduced (λ x : t, π x) subtype.topological_space) (π a)) :
93+
π ⁻¹' s ∈ 𝓝[t] a :=
94+
begin
95+
letI := topological_space.coinduced (λ x : t, π x) subtype.topological_space,
96+
rcases mem_nhds_iff.mp hs with ⟨V, hVs, V_op, mem_V⟩,
97+
refine mem_nhds_within_iff_exists_mem_nhds_inter.mpr ⟨π ⁻¹' V, mem_nhds_iff.mpr ⟨t ∩ π ⁻¹' V,
98+
inter_subset_right t (π ⁻¹' V), _, mem_sep h mem_V⟩, subset.trans (inter_subset_left _ _)
99+
(preimage_mono hVs)⟩,
100+
obtain ⟨u, hu1, hu2⟩ := is_open_induced_iff.mp (is_open_coinduced.1 V_op),
101+
rw [preimage_comp] at hu2,
102+
rw [set.inter_comm, ←(subtype.preimage_coe_eq_preimage_coe_iff.mp hu2)],
103+
exact hu1.inter ht,
104+
end
105+
90106
lemma mem_nhds_within_of_mem_nhds {s t : set α} {a : α} (h : s ∈ 𝓝 a) :
91107
s ∈ 𝓝[t] a :=
92108
mem_inf_sets_of_left h
@@ -151,6 +167,12 @@ theorem nhds_within_eq_of_open {a : α} {s : set α} (h₀ : a ∈ s) (h₁ : is
151167
𝓝[s] a = 𝓝 a :=
152168
inf_eq_left.2 $ le_principal_iff.2 $ is_open.mem_nhds h₁ h₀
153169

170+
lemma preimage_nhds_within_coinduced {π : α → β} {s : set β} {t : set α} {a : α}
171+
(h : a ∈ t) (ht : is_open t)
172+
(hs : s ∈ @nhds β (topological_space.coinduced (λ x : t, π x) subtype.topological_space) (π a)) :
173+
π ⁻¹' s ∈ 𝓝 a :=
174+
by { rw ←nhds_within_eq_of_open h ht, exact preimage_nhds_within_coinduced' h ht hs }
175+
154176
@[simp] theorem nhds_within_empty (a : α) : 𝓝[∅] a = ⊥ :=
155177
by rw [nhds_within, principal_empty, inf_bot_eq]
156178

0 commit comments

Comments
 (0)