|
87 | 87 | exact (nhds a).sets_of_superset ((nhds a).inter_sets Hw h1) hw,
|
88 | 88 | end
|
89 | 89 |
|
| 90 | +lemma preimage_nhds_within_coinduced' {π : α → β} {s : set β} {t : set α} {a : α} |
| 91 | + (h : a ∈ t) (ht : is_open t) |
| 92 | + (hs : s ∈ @nhds β (topological_space.coinduced (λ x : t, π x) subtype.topological_space) (π a)) : |
| 93 | + π ⁻¹' s ∈ 𝓝[t] a := |
| 94 | +begin |
| 95 | + letI := topological_space.coinduced (λ x : t, π x) subtype.topological_space, |
| 96 | + rcases mem_nhds_iff.mp hs with ⟨V, hVs, V_op, mem_V⟩, |
| 97 | + refine mem_nhds_within_iff_exists_mem_nhds_inter.mpr ⟨π ⁻¹' V, mem_nhds_iff.mpr ⟨t ∩ π ⁻¹' V, |
| 98 | + inter_subset_right t (π ⁻¹' V), _, mem_sep h mem_V⟩, subset.trans (inter_subset_left _ _) |
| 99 | + (preimage_mono hVs)⟩, |
| 100 | + obtain ⟨u, hu1, hu2⟩ := is_open_induced_iff.mp (is_open_coinduced.1 V_op), |
| 101 | + rw [preimage_comp] at hu2, |
| 102 | + rw [set.inter_comm, ←(subtype.preimage_coe_eq_preimage_coe_iff.mp hu2)], |
| 103 | + exact hu1.inter ht, |
| 104 | +end |
| 105 | + |
90 | 106 | lemma mem_nhds_within_of_mem_nhds {s t : set α} {a : α} (h : s ∈ 𝓝 a) :
|
91 | 107 | s ∈ 𝓝[t] a :=
|
92 | 108 | mem_inf_sets_of_left h
|
@@ -151,6 +167,12 @@ theorem nhds_within_eq_of_open {a : α} {s : set α} (h₀ : a ∈ s) (h₁ : is
|
151 | 167 | 𝓝[s] a = 𝓝 a :=
|
152 | 168 | inf_eq_left.2 $ le_principal_iff.2 $ is_open.mem_nhds h₁ h₀
|
153 | 169 |
|
| 170 | +lemma preimage_nhds_within_coinduced {π : α → β} {s : set β} {t : set α} {a : α} |
| 171 | + (h : a ∈ t) (ht : is_open t) |
| 172 | + (hs : s ∈ @nhds β (topological_space.coinduced (λ x : t, π x) subtype.topological_space) (π a)) : |
| 173 | + π ⁻¹' s ∈ 𝓝 a := |
| 174 | +by { rw ←nhds_within_eq_of_open h ht, exact preimage_nhds_within_coinduced' h ht hs } |
| 175 | + |
154 | 176 | @[simp] theorem nhds_within_empty (a : α) : 𝓝[∅] a = ⊥ :=
|
155 | 177 | by rw [nhds_within, principal_empty, inf_bot_eq]
|
156 | 178 |
|
|
0 commit comments