Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit db617b3

Browse files
feat(ring_theory/ideal/operations): add algebra structure on quotient (#5703)
I added very basic stuff about `R/I` as an `R`-algebra that are missing in mathlib.
1 parent f3d3d04 commit db617b3

File tree

1 file changed

+23
-0
lines changed

1 file changed

+23
-0
lines changed

src/ring_theory/ideal/operations.lean

Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1139,6 +1139,29 @@ end
11391139

11401140
section quotient_algebra
11411141

1142+
/-- The `R`-algebra structure on `R/I` -/
1143+
instance {I : ideal R} : algebra R (ideal.quotient I) := (ideal.quotient.mk I).to_algebra
1144+
1145+
/-- The canonical morphism `R →ₐ[R] I.quotient`, for `I` an ideal of `R`, as morphism of
1146+
`R`-algebras. -/
1147+
def quotient.mkₐ (I : ideal R) : R →ₐ[R] I.quotient :=
1148+
⟨λ a, submodule.quotient.mk a, rfl, λ _ _, rfl, rfl, λ _ _, rfl, λ _, rfl⟩
1149+
1150+
lemma quotient.mkₐ_to_ring_hom (I : ideal R) :
1151+
(quotient.mkₐ I).to_ring_hom = ideal.quotient.mk I := rfl
1152+
1153+
@[simp] lemma quotient.mkₐ_eq_mk (I : ideal R) :
1154+
⇑(quotient.mkₐ I) = ideal.quotient.mk I := rfl
1155+
1156+
/-- The canonical morphism `R →ₐ[R] I.quotient` is surjective. -/
1157+
lemma quotient.mkₐ_surjective (I : ideal R) : function.surjective (quotient.mkₐ I) :=
1158+
surjective_quot_mk _
1159+
1160+
/-- The kernel of `R →ₐ[R] I.quotient` is `I`. -/
1161+
@[simp]
1162+
lemma quotient.mkₐ_ker (I : ideal R) : (quotient.mkₐ I).to_ring_hom.ker = I :=
1163+
ideal.mk_ker
1164+
11421165
/-- The ring hom `R/J →+* S/I` induced by a ring hom `f : R →+* S` with `J ≤ f⁻¹(I)` -/
11431166
def quotient_map {I : ideal R} (J : ideal S) (f : R →+* S) (hIJ : I ≤ J.comap f) :
11441167
I.quotient →+* J.quotient :=

0 commit comments

Comments
 (0)