@@ -13,6 +13,8 @@ import linear_algebra.prod
13
13
We define `star_linear_equiv`, which is the star operation bundled as a star-linear map.
14
14
It is defined on a star algebra `A` over the base ring `R`.
15
15
16
+ This file also provides some lemmas that need `algebra.module.basic` imported to prove.
17
+
16
18
## TODO
17
19
18
20
- Define `star_linear_equiv` for noncommutative `R`. We only the commutative case for now since,
@@ -25,10 +27,35 @@ It is defined on a star algebra `A` over the base ring `R`.
25
27
equivalence.
26
28
-/
27
29
30
+ section smul_lemmas
31
+ variables {R M : Type *}
32
+
33
+ @[simp] lemma star_int_cast_smul [ring R] [add_comm_group M] [module R M] [star_add_monoid M]
34
+ (n : ℤ) (x : M) : star ((n : R) • x) = (n : R) • star x :=
35
+ map_int_cast_smul (star_add_equiv : M ≃+ M) R R n x
36
+
37
+ @[simp] lemma star_nat_cast_smul [semiring R] [add_comm_monoid M] [module R M] [star_add_monoid M]
38
+ (n : ℕ) (x : M) : star ((n : R) • x) = (n : R) • star x :=
39
+ map_nat_cast_smul (star_add_equiv : M ≃+ M) R R n x
40
+
41
+ @[simp] lemma star_inv_int_cast_smul [division_ring R] [add_comm_group M] [module R M]
42
+ [star_add_monoid M] (n : ℤ) (x : M) : star ((n⁻¹ : R) • x) = (n⁻¹ : R) • star x :=
43
+ map_inv_int_cast_smul (star_add_equiv : M ≃+ M) R R n x
44
+
45
+ @[simp] lemma star_inv_nat_cast_smul [division_ring R] [add_comm_group M] [module R M]
46
+ [star_add_monoid M] (n : ℕ) (x : M) : star ((n⁻¹ : R) • x) = (n⁻¹ : R) • star x :=
47
+ map_inv_nat_cast_smul (star_add_equiv : M ≃+ M) R R n x
48
+
49
+ @[simp] lemma star_rat_cast_smul [division_ring R] [add_comm_group M] [module R M]
50
+ [star_add_monoid M] (n : ℚ) (x : M) : star ((n : R) • x) = (n : R) • star x :=
51
+ map_rat_cast_smul (star_add_equiv : M ≃+ M) _ _ _ x
52
+
28
53
@[simp] lemma star_rat_smul {R : Type *} [add_comm_group R] [star_add_monoid R] [module ℚ R]
29
54
(x : R) (n : ℚ) : star (n • x) = n • star x :=
30
55
map_rat_smul (star_add_equiv : R ≃+ R) _ _
31
56
57
+ end smul_lemmas
58
+
32
59
/-- If `A` is a module over a commutative `R` with compatible actions,
33
60
then `star` is a semilinear equivalence. -/
34
61
@[simps]
0 commit comments