Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ec68c7e

Browse files
committed
feat(set_theory/cardinal): lift_sup (#8675)
Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com> Co-authored-by: Reid Barton <rwbarton@gmail.com>
1 parent 462359d commit ec68c7e

File tree

1 file changed

+48
-0
lines changed

1 file changed

+48
-0
lines changed

src/set_theory/cardinal.lean

Lines changed: 48 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -605,6 +605,54 @@ begin
605605
exact quotient.sound ⟨equiv.sigma_equiv_prod ι α⟩,
606606
end
607607

608+
protected lemma le_sup_iff {ι : Type v} {f : ι → cardinal.{max v w}} {c : cardinal} :
609+
(c ≤ sup f) ↔ (∀ b, (∀ i, f i ≤ b) → c ≤ b) :=
610+
⟨λ h b hb, le_trans h (sup_le.mpr hb), λ h, h _ $ λ i, le_sup f i⟩
611+
612+
/-- The lift of a supremum is the supremum of the lifts. -/
613+
lemma lift_sup {ι : Type v} (f : ι → cardinal.{max v w}) :
614+
lift.{(max v w) u} (sup.{v w} f) =
615+
sup.{v (max u w)} (λ i : ι, lift.{(max v w) u} (f i)) :=
616+
begin
617+
apply le_antisymm,
618+
{ rw [cardinal.le_sup_iff], intros c hc, by_contra h,
619+
obtain ⟨d, rfl⟩ := cardinal.lift_down (not_le.mp h).le,
620+
simp only [lift_le, sup_le] at h hc,
621+
exact h hc },
622+
{ simp only [cardinal.sup_le, lift_le, le_sup, implies_true_iff] }
623+
end
624+
625+
/-- To prove that the lift of a supremum is bounded by some cardinal `t`,
626+
it suffices to show that the lift of each cardinal is bounded by `t`. -/
627+
lemma lift_sup_le {ι : Type v} (f : ι → cardinal.{max v w})
628+
(t : cardinal.{max u v w}) (w : ∀ i, lift.{_ u} (f i) ≤ t) :
629+
lift.{(max v w) u} (sup f) ≤ t :=
630+
by { rw lift_sup, exact sup_le.mpr w, }
631+
632+
@[simp] lemma lift_sup_le_iff {ι : Type v} (f : ι → cardinal.{max v w}) (t : cardinal.{max u v w}) :
633+
lift.{(max v w) u} (sup f) ≤ t ↔ ∀ i, lift.{_ u} (f i) ≤ t :=
634+
⟨λ h i, (lift_le.mpr (le_sup f i)).trans h,
635+
λ h, lift_sup_le f t h⟩
636+
637+
universes v' w'
638+
639+
/--
640+
To prove an inequality between the lifts to a common universe of two different supremums,
641+
it suffices to show that the lift of each cardinal from the smaller supremum
642+
if bounded by the lift of some cardinal from the larger supremum.
643+
-/
644+
lemma lift_sup_le_lift_sup
645+
{ι : Type v} {ι' : Type v'} (f : ι → cardinal.{max v w}) (f' : ι' → cardinal.{max v' w'})
646+
(g : ι → ι') (h : ∀ i, lift.{_ (max v' w')} (f i) ≤ lift.{_ (max v w)} (f' (g i))) :
647+
lift.{_ (max v' w')} (sup f) ≤ lift.{_ (max v w)} (sup f') :=
648+
begin
649+
apply lift_sup_le.{(max v' w')} f,
650+
intro i,
651+
apply le_trans (h i),
652+
simp only [lift_le],
653+
apply le_sup,
654+
end
655+
608656
/-- `ω` is the smallest infinite cardinal, also known as ℵ₀. -/
609657
def omega : cardinal.{u} := lift (mk ℕ)
610658

0 commit comments

Comments
 (0)