Skip to content

Commit

Permalink
feat(measure_theory/function/l1_space): add some integrability lemmas (
Browse files Browse the repository at this point in the history
…#14931)

Co-authored-by: RemyDegenne <Remydegenne@gmail.com>
  • Loading branch information
JasonKYi and RemyDegenne committed Jun 27, 2022
1 parent cf8b46d commit f5d2cc8
Show file tree
Hide file tree
Showing 3 changed files with 62 additions and 5 deletions.
12 changes: 12 additions & 0 deletions src/analysis/normed_space/lattice_ordered_group.lean
Expand Up @@ -131,6 +131,18 @@ begin
exact abs_sup_sub_sup_le_abs _ _ _, } },
end

lemma norm_inf_le_add (x y : α) : ∥x ⊓ y∥ ≤ ∥x∥ + ∥y∥ :=
begin
have h : ∥x ⊓ y - 00∥ ≤ ∥x - 0∥ + ∥y - 0∥ := norm_inf_sub_inf_le_add_norm x y 0 0,
simpa only [inf_idem, sub_zero] using h,
end

lemma norm_sup_le_add (x y : α) : ∥x ⊔ y∥ ≤ ∥x∥ + ∥y∥ :=
begin
have h : ∥x ⊔ y - 00∥ ≤ ∥x - 0∥ + ∥y - 0∥ := norm_sup_sub_sup_le_add_norm x y 0 0,
simpa only [sup_idem, sub_zero] using h,
end

/--
Let `α` be a normed lattice ordered group. Then the infimum is jointly continuous.
-/
Expand Down
41 changes: 36 additions & 5 deletions src/measure_theory/function/l1_space.lean
Expand Up @@ -3,7 +3,7 @@ Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou
-/
import measure_theory.function.lp_space
import measure_theory.function.lp_order


/-!
Expand Down Expand Up @@ -605,12 +605,43 @@ lemma integrable.sub {f g : α → β}
by simpa only [sub_eq_add_neg] using hf.add hg.neg

lemma integrable.norm {f : α → β} (hf : integrable f μ) :
integrable (λa, ∥f a∥) μ :=
integrable (λ a, ∥f a∥) μ :=
⟨hf.ae_strongly_measurable.norm, hf.has_finite_integral.norm⟩

lemma integrable.abs {f : α → ℝ} (hf : integrable f μ) :
integrable (λa, |f a|) μ :=
by simpa [← real.norm_eq_abs] using hf.norm
lemma integrable.inf {β} [normed_lattice_add_comm_group β] {f g : α → β}
(hf : integrable f μ) (hg : integrable g μ) :
integrable (f ⊓ g) μ :=
by { rw ← mem_ℒp_one_iff_integrable at hf hg ⊢, exact hf.inf hg, }

lemma integrable.sup {β} [normed_lattice_add_comm_group β] {f g : α → β}
(hf : integrable f μ) (hg : integrable g μ) :
integrable (f ⊔ g) μ :=
by { rw ← mem_ℒp_one_iff_integrable at hf hg ⊢, exact hf.sup hg, }

lemma integrable.abs {β} [normed_lattice_add_comm_group β] {f : α → β} (hf : integrable f μ) :
integrable (λ a, |f a|) μ :=
by { rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact hf.abs, }

lemma integrable.bdd_mul {F : Type*} [normed_division_ring F]
{f g : α → F} (hint : integrable g μ) (hm : ae_strongly_measurable f μ)
(hfbdd : ∃ C, ∀ x, ∥f x∥ ≤ C) :
integrable (λ x, f x * g x) μ :=
begin
casesI is_empty_or_nonempty α with hα hα,
{ rw μ.eq_zero_of_is_empty,
exact integrable_zero_measure },
{ refine ⟨hm.mul hint.1, _⟩,
obtain ⟨C, hC⟩ := hfbdd,
have hCnonneg : 0 ≤ C := le_trans (norm_nonneg _) (hC hα.some),
have : (λ x, ∥f x * g x∥₊) ≤ λ x, ⟨C, hCnonneg⟩ * ∥g x∥₊,
{ intro x,
simp only [nnnorm_mul],
exact mul_le_mul_of_nonneg_right (hC x) (zero_le _) },
refine lt_of_le_of_lt (lintegral_mono_nnreal this) _,
simp only [ennreal.coe_mul],
rw lintegral_const_mul' _ _ ennreal.coe_ne_top,
exact ennreal.mul_lt_top ennreal.coe_ne_top (ne_of_lt hint.2) },
end

lemma integrable_norm_iff {f : α → β} (hf : ae_strongly_measurable f μ) :
integrable (λa, ∥f a∥) μ ↔ integrable f μ :=
Expand Down
14 changes: 14 additions & 0 deletions src/measure_theory/function/lp_order.lean
Expand Up @@ -58,6 +58,20 @@ instance : ordered_add_comm_group (Lp E p μ) :=
{ add_le_add_left := λ f g hfg f', add_le_add_left hfg f',
..subtype.partial_order _, ..add_subgroup.to_add_comm_group _}

lemma _root_.measure_theory.mem_ℒp.sup {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) :
mem_ℒp (f ⊔ g) p μ :=
mem_ℒp.mono' (hf.norm.add hg.norm) (hf.1.sup hg.1)
(filter.eventually_of_forall (λ x, norm_sup_le_add (f x) (g x)))

lemma _root_.measure_theory.mem_ℒp.inf {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) :
mem_ℒp (f ⊓ g) p μ :=
mem_ℒp.mono' (hf.norm.add hg.norm) (hf.1.inf hg.1)
(filter.eventually_of_forall (λ x, norm_inf_le_add (f x) (g x)))

lemma _root_.measure_theory.mem_ℒp.abs {f : α → E} (hf : mem_ℒp f p μ) :
mem_ℒp (|f|) p μ :=
hf.sup hf.neg

end order

end Lp
Expand Down

0 comments on commit f5d2cc8

Please sign in to comment.