Skip to content

Commit

Permalink
feat(set_theory/cofinality): Prove simple theorems on regular cardina…
Browse files Browse the repository at this point in the history
…ls (#12328)
  • Loading branch information
vihdzp committed Mar 3, 2022
1 parent 16ad25c commit f7a6fe9
Showing 1 changed file with 13 additions and 1 deletion.
14 changes: 13 additions & 1 deletion src/set_theory/cofinality.lean
Original file line number Diff line number Diff line change
Expand Up @@ -472,8 +472,14 @@ theorem is_strong_limit.is_limit {c} (H : is_strong_limit c) : is_limit c :=
def is_regular (c : cardinal) : Prop :=
ω ≤ c ∧ c.ord.cof = c

lemma is_regular.omega_le {c : cardinal} (H : c.is_regular) : ω ≤ c :=
H.1

lemma is_regular.cof_eq {c : cardinal} (H : c.is_regular) : c.ord.cof = c :=
H.2

lemma is_regular.pos {c : cardinal} (H : c.is_regular) : 0 < c :=
omega_pos.trans_le H.left
omega_pos.trans_le H.1

lemma is_regular.ord_pos {c : cardinal} (H : c.is_regular) : 0 < c.ord :=
by { rw cardinal.lt_ord, exact H.pos }
Expand Down Expand Up @@ -506,6 +512,12 @@ theorem succ_is_regular {c : cardinal.{u}} (h : ω ≤ c) : is_regular (succ c)
apply typein_lt_type }
end

theorem aleph'_succ_is_regular {o : ordinal} (h : ordinal.omega ≤ o) : is_regular (aleph' o.succ) :=
by { rw aleph'_succ, exact succ_is_regular (omega_le_aleph'.2 h) }

theorem aleph_succ_is_regular {o : ordinal} : is_regular (aleph o.succ) :=
by { rw aleph_succ, exact succ_is_regular (omega_le_aleph o) }

/--
A function whose codomain's cardinality is infinite but strictly smaller than its domain's
has a fiber with cardinality strictly great than the codomain.
Expand Down

0 comments on commit f7a6fe9

Please sign in to comment.