Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit fdbfe75

Browse files
committed
chore(group_theory/group_action): Rename some group_action lemmas (#4946)
This renames * These lemmas about `group α`, for consistency with `smul_neg` etc, which are in the global scope: * `mul_action.inv_smul_smul` → `inv_smul_smul` * `mul_action.smul_inv_smul` → `smul_inv_smul` * `mul_action.inv_smul_eq_iff` → `inv_smul_eq_iff` * `mul_action.eq_inv_smul_iff` → `eq_inv_smul_iff` * These lemmas about `group_with_zero α`, for consistency with `smul_inv_smul'` etc, which have trailing `'`s (and were added in #2693, while the `'`-less ones were added later): * `inv_smul_eq_iff` → `inv_smul_eq_iff'` * `eq_inv_smul_iff` → `eq_inv_smul_iff'`
1 parent 22b61b2 commit fdbfe75

File tree

3 files changed

+10
-11
lines changed

3 files changed

+10
-11
lines changed

src/algebra/pointwise.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -365,7 +365,7 @@ by simp only [← image_smul, image_eta, zero_smul, h.image_const, singleton_zer
365365

366366
lemma mem_inv_smul_set_iff [field α] [mul_action α β] {a : α} (ha : a ≠ 0) (A : set β) (x : β) :
367367
x ∈ a⁻¹ • A ↔ a • x ∈ A :=
368-
by simp only [← image_smul, mem_image, inv_smul_eq_iff ha, exists_eq_right]
368+
by simp only [← image_smul, mem_image, inv_smul_eq_iff' ha, exists_eq_right]
369369

370370
lemma mem_smul_set_iff_inv_smul_mem [field α] [mul_action α β] {a : α} (ha : a ≠ 0) (A : set β)
371371
(x : β) : x ∈ a • A ↔ a⁻¹ • x ∈ A :=

src/algebra/polynomial/group_ring_action.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -67,11 +67,11 @@ variables (G : Type*) [group G]
6767

6868
theorem eval_smul' [mul_semiring_action G S] (g : G) (f : polynomial S) (x : S) :
6969
f.eval (g • x) = g • (g⁻¹ • f).eval x :=
70-
by rw [← smul_eval_smul, mul_action.smul_inv_smul]
70+
by rw [← smul_eval_smul, smul_inv_smul]
7171

7272
theorem smul_eval [mul_semiring_action G S] (g : G) (f : polynomial S) (x : S) :
7373
(g • f).eval x = g • f.eval (g⁻¹ • x) :=
74-
by rw [← smul_eval_smul, mul_action.smul_inv_smul]
74+
by rw [← smul_eval_smul, smul_inv_smul]
7575

7676
end polynomial
7777

src/group_theory/group_action.lean

Lines changed: 7 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -101,10 +101,10 @@ lemma inv_smul_smul' {c : G} (hc : c ≠ 0) (x : β) : c⁻¹ • c • x = x :=
101101
lemma smul_inv_smul' {c : G} (hc : c ≠ 0) (x : β) : c • c⁻¹ • x = x :=
102102
(units.mk0 c hc).smul_inv_smul x
103103

104-
lemma inv_smul_eq_iff {a : G} (ha : a ≠ 0) {x y : β} : a⁻¹ • x = y ↔ x = a • y :=
104+
lemma inv_smul_eq_iff' {a : G} (ha : a ≠ 0) {x y : β} : a⁻¹ • x = y ↔ x = a • y :=
105105
by { split; intro h, rw [← h, smul_inv_smul' ha], rw [h, inv_smul_smul' ha] }
106106

107-
lemma eq_inv_smul_iff {a : G} (ha : a ≠ 0) {x y : β} : x = a⁻¹ • y ↔ a • x = y :=
107+
lemma eq_inv_smul_iff' {a : G} (ha : a ≠ 0) {x y : β} : x = a⁻¹ • y ↔ a • x = y :=
108108
by { split; intro h, rw [h, smul_inv_smul' ha], rw [← h, inv_smul_smul' ha] }
109109

110110
end gwz
@@ -240,11 +240,9 @@ rfl
240240

241241
end mul_action
242242

243-
namespace mul_action
244-
variables [group α] [mul_action α β]
245243

246244
section
247-
open mul_action quotient_group
245+
variables [group α] [mul_action α β]
248246

249247
@[simp] lemma inv_smul_smul (c : α) (x : β) : c⁻¹ • c • x = x :=
250248
(to_units c).inv_smul_smul x
@@ -268,6 +266,7 @@ begin
268266
{rw inv_smul_smul},
269267
end
270268

269+
namespace mul_action
271270
variable (α)
272271

273272
/-- The stabilizer of an element under an action, i.e. what sends the element to itself.
@@ -365,7 +364,7 @@ quotient.induction_on' g' $ λ _, mul_smul _ _ _
365364

366365
theorem injective_of_quotient_stabilizer : function.injective (of_quotient_stabilizer α x) :=
367366
λ y₁ y₂, quotient.induction_on₂' y₁ y₂ $ λ g₁ g₂ (H : g₁ • x = g₂ • x), quotient.sound' $
368-
show (g₁⁻¹ * g₂) • x = x, by rw [mul_smul, ← H, mul_action.inv_smul_smul]
367+
show (g₁⁻¹ * g₂) • x = x, by rw [mul_smul, ← H, inv_smul_smul]
369368

370369
/-- Orbit-stabilizer theorem. -/
371370
noncomputable def orbit_equiv_quotient_stabilizer (b : β) :
@@ -379,10 +378,10 @@ equiv.symm $ equiv.of_bijective
379378
((orbit_equiv_quotient_stabilizer α b).symm a : β) = a • b :=
380379
rfl
381380

382-
end
383-
384381
end mul_action
385382

383+
end
384+
386385
/-- Typeclass for multiplicative actions on additive structures. This generalizes group modules. -/
387386
class distrib_mul_action (α : Type u) (β : Type v) [monoid α] [add_monoid β] extends mul_action α β :=
388387
(smul_add : ∀(r : α) (x y : β), r • (x + y) = r • x + r • y)

0 commit comments

Comments
 (0)