Skip to content

Commit

Permalink
bump to nightly-2023-05-23-20
Browse files Browse the repository at this point in the history
  • Loading branch information
leanprover-community-bot committed May 23, 2023
1 parent b380cf8 commit 4d066d3
Show file tree
Hide file tree
Showing 61 changed files with 2,132 additions and 1,008 deletions.
24 changes: 12 additions & 12 deletions Mathbin/Analysis/Calculus/FderivMeasurable.lean
Expand Up @@ -485,10 +485,10 @@ theorem aEMeasurable_deriv [MeasurableSpace 𝕜] [OpensMeasurableSpace 𝕜] [M
(measurable_deriv f).AEMeasurable
#align ae_measurable_deriv aEMeasurable_deriv

theorem aeStronglyMeasurable_deriv [MeasurableSpace 𝕜] [OpensMeasurableSpace 𝕜]
[SecondCountableTopology F] (f : 𝕜 → F) (μ : Measure 𝕜) : AeStronglyMeasurable (deriv f) μ :=
(stronglyMeasurable_deriv f).AeStronglyMeasurable
#align ae_strongly_measurable_deriv aeStronglyMeasurable_deriv
theorem aEStronglyMeasurable_deriv [MeasurableSpace 𝕜] [OpensMeasurableSpace 𝕜]
[SecondCountableTopology F] (f : 𝕜 → F) (μ : Measure 𝕜) : AEStronglyMeasurable (deriv f) μ :=
(stronglyMeasurable_deriv f).AEStronglyMeasurable
#align ae_strongly_measurable_deriv aEStronglyMeasurable_deriv

end fderiv

Expand Down Expand Up @@ -871,10 +871,10 @@ theorem aEMeasurable_derivWithin_Ici [MeasurableSpace F] [BorelSpace F] (μ : Me
(measurable_derivWithin_Ici f).AEMeasurable
#align ae_measurable_deriv_within_Ici aEMeasurable_derivWithin_Ici

theorem aeStronglyMeasurable_derivWithin_Ici [SecondCountableTopology F] (μ : Measure ℝ) :
AeStronglyMeasurable (fun x => derivWithin f (Ici x) x) μ :=
(stronglyMeasurable_derivWithin_Ici f).AeStronglyMeasurable
#align ae_strongly_measurable_deriv_within_Ici aeStronglyMeasurable_derivWithin_Ici
theorem aEStronglyMeasurable_derivWithin_Ici [SecondCountableTopology F] (μ : Measure ℝ) :
AEStronglyMeasurable (fun x => derivWithin f (Ici x) x) μ :=
(stronglyMeasurable_derivWithin_Ici f).AEStronglyMeasurable
#align ae_strongly_measurable_deriv_within_Ici aEStronglyMeasurable_derivWithin_Ici

/-- The set of right differentiability points of a function taking values in a complete space is
Borel-measurable. -/
Expand All @@ -901,10 +901,10 @@ theorem aEMeasurable_derivWithin_Ioi [MeasurableSpace F] [BorelSpace F] (μ : Me
(measurable_derivWithin_Ioi f).AEMeasurable
#align ae_measurable_deriv_within_Ioi aEMeasurable_derivWithin_Ioi

theorem aeStronglyMeasurable_derivWithin_Ioi [SecondCountableTopology F] (μ : Measure ℝ) :
AeStronglyMeasurable (fun x => derivWithin f (Ioi x) x) μ :=
(stronglyMeasurable_derivWithin_Ioi f).AeStronglyMeasurable
#align ae_strongly_measurable_deriv_within_Ioi aeStronglyMeasurable_derivWithin_Ioi
theorem aEStronglyMeasurable_derivWithin_Ioi [SecondCountableTopology F] (μ : Measure ℝ) :
AEStronglyMeasurable (fun x => derivWithin f (Ioi x) x) μ :=
(stronglyMeasurable_derivWithin_Ioi f).AEStronglyMeasurable
#align ae_strongly_measurable_deriv_within_Ioi aEStronglyMeasurable_derivWithin_Ioi

end RightDeriv

20 changes: 10 additions & 10 deletions Mathbin/Analysis/Calculus/ParametricIntegral.lean
Expand Up @@ -74,8 +74,8 @@ ae-measurable for `x` in the same ball. See `has_fderiv_at_integral_of_dominated
slightly less general but usually more useful version. -/
theorem hasFDerivAt_integral_of_dominated_loc_of_lip' {F : H → α → E} {F' : α → H →L[𝕜] E} {x₀ : H}
{bound : α → ℝ} {ε : ℝ} (ε_pos : 0 < ε)
(hF_meas : ∀ x ∈ ball x₀ ε, AeStronglyMeasurable (F x) μ) (hF_int : Integrable (F x₀) μ)
(hF'_meas : AeStronglyMeasurable F' μ)
(hF_meas : ∀ x ∈ ball x₀ ε, AEStronglyMeasurable (F x) μ) (hF_int : Integrable (F x₀) μ)
(hF'_meas : AEStronglyMeasurable F' μ)
(h_lipsch : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ‖F x a - F x₀ a‖ ≤ bound a * ‖x - x₀‖)
(bound_integrable : Integrable (bound : α → ℝ) μ)
(h_diff : ∀ᵐ a ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀) :
Expand Down Expand Up @@ -169,8 +169,8 @@ theorem hasFDerivAt_integral_of_dominated_loc_of_lip' {F : H → α → E} {F' :
(with a ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is ae-measurable
for `x` in a possibly smaller neighborhood of `x₀`. -/
theorem hasFDerivAt_integral_of_dominated_loc_of_lip {F : H → α → E} {F' : α → H →L[𝕜] E} {x₀ : H}
{bound : α → ℝ} {ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (F x) μ)
(hF_int : Integrable (F x₀) μ) (hF'_meas : AeStronglyMeasurable F' μ)
{bound : α → ℝ} {ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) μ)
(hF_int : Integrable (F x₀) μ) (hF'_meas : AEStronglyMeasurable F' μ)
(h_lip : ∀ᵐ a ∂μ, LipschitzOnWith (Real.nnabs <| bound a) (fun x => F x a) (ball x₀ ε))
(bound_integrable : Integrable (bound : α → ℝ) μ)
(h_diff : ∀ᵐ a ∂μ, HasFDerivAt (fun x => F x a) (F' a) x₀) :
Expand All @@ -191,8 +191,8 @@ derivative norm uniformly bounded by an integrable function (the ball radius is
and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/
theorem hasFDerivAt_integral_of_dominated_of_fderiv_le {F : H → α → E} {F' : H → α → H →L[𝕜] E}
{x₀ : H} {bound : α → ℝ} {ε : ℝ} (ε_pos : 0 < ε)
(hF_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (F x) μ) (hF_int : Integrable (F x₀) μ)
(hF'_meas : AeStronglyMeasurable (F' x₀) μ)
(hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) μ) (hF_int : Integrable (F x₀) μ)
(hF'_meas : AEStronglyMeasurable (F' x₀) μ)
(h_bound : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ‖F' x a‖ ≤ bound a)
(bound_integrable : Integrable (bound : α → ℝ) μ)
(h_diff : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, HasFDerivAt (fun x => F x a) (F' x a) x) :
Expand Down Expand Up @@ -221,8 +221,8 @@ assuming `F x₀` is integrable, `x ↦ F x a` is locally Lipschitz on a ball ar
(with ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is
ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/
theorem hasDerivAt_integral_of_dominated_loc_of_lip {F : 𝕜 → α → E} {F' : α → E} {x₀ : 𝕜} {ε : ℝ}
(ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (F x) μ)
(hF_int : Integrable (F x₀) μ) (hF'_meas : AeStronglyMeasurable F' μ) {bound : α → ℝ}
(ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) μ)
(hF_int : Integrable (F x₀) μ) (hF'_meas : AEStronglyMeasurable F' μ) {bound : α → ℝ}
(h_lipsch : ∀ᵐ a ∂μ, LipschitzOnWith (Real.nnabs <| bound a) (fun x => F x a) (ball x₀ ε))
(bound_integrable : Integrable (bound : α → ℝ) μ)
(h_diff : ∀ᵐ a ∂μ, HasDerivAt (fun x => F x a) (F' a) x₀) :
Expand Down Expand Up @@ -253,8 +253,8 @@ theorem hasDerivAt_integral_of_dominated_loc_of_lip {F : 𝕜 → α → E} {F'
(with interval radius independent of `a`) with derivative uniformly bounded by an integrable
function, and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/
theorem hasDerivAt_integral_of_dominated_loc_of_deriv_le {F : 𝕜 → α → E} {F' : 𝕜 → α → E} {x₀ : 𝕜}
{ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (F x) μ)
(hF_int : Integrable (F x₀) μ) (hF'_meas : AeStronglyMeasurable (F' x₀) μ) {bound : α → ℝ}
{ε : ℝ} (ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) μ)
(hF_int : Integrable (F x₀) μ) (hF'_meas : AEStronglyMeasurable (F' x₀) μ) {bound : α → ℝ}
(h_bound : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, ‖F' x a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
(h_diff : ∀ᵐ a ∂μ, ∀ x ∈ ball x₀ ε, HasDerivAt (fun x => F x a) (F' x a) x) :
Integrable (F' x₀) μ ∧ HasDerivAt (fun n => ∫ a, F n a ∂μ) (∫ a, F' x₀ a ∂μ) x₀ :=
Expand Down
16 changes: 8 additions & 8 deletions Mathbin/Analysis/Calculus/ParametricIntervalIntegral.lean
Expand Up @@ -33,9 +33,9 @@ namespace intervalIntegral
(with a ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is ae-measurable
for `x` in a possibly smaller neighborhood of `x₀`. -/
theorem hasFDerivAt_integral_of_dominated_loc_of_lip {F : H → ℝ → E} {F' : ℝ → H →L[𝕜] E} {x₀ : H}
(ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (F x) (μ.restrict (Ι a b)))
(ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b)))
(hF_int : IntervalIntegrable (F x₀) μ a b)
(hF'_meas : AeStronglyMeasurable F' (μ.restrict (Ι a b)))
(hF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b)))
(h_lip :
∀ᵐ t ∂μ, t ∈ Ι a b → LipschitzOnWith (Real.nnabs <| bound t) (fun x => F x t) (ball x₀ ε))
(bound_integrable : IntervalIntegrable bound μ a b)
Expand All @@ -57,9 +57,9 @@ derivative norm uniformly bounded by an integrable function (the ball radius is
and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/
theorem hasFDerivAt_integral_of_dominated_of_fderiv_le {F : H → ℝ → E} {F' : H → ℝ → H →L[𝕜] E}
{x₀ : H} (ε_pos : 0 < ε)
(hF_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (F x) (μ.restrict (Ι a b)))
(hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b)))
(hF_int : IntervalIntegrable (F x₀) μ a b)
(hF'_meas : AeStronglyMeasurable (F' x₀) (μ.restrict (Ι a b)))
(hF'_meas : AEStronglyMeasurable (F' x₀) (μ.restrict (Ι a b)))
(h_bound : ∀ᵐ t ∂μ, t ∈ Ι a b → ∀ x ∈ ball x₀ ε, ‖F' x t‖ ≤ bound t)
(bound_integrable : IntervalIntegrable bound μ a b)
(h_diff : ∀ᵐ t ∂μ, t ∈ Ι a b → ∀ x ∈ ball x₀ ε, HasFDerivAt (fun x => F x t) (F' x t) x) :
Expand All @@ -78,9 +78,9 @@ assuming `F x₀` is integrable, `x ↦ F x a` is locally Lipschitz on a ball ar
(with ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is
ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/
theorem hasDerivAt_integral_of_dominated_loc_of_lip {F : 𝕜 → ℝ → E} {F' : ℝ → E} {x₀ : 𝕜}
(ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (F x) (μ.restrict (Ι a b)))
(ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b)))
(hF_int : IntervalIntegrable (F x₀) μ a b)
(hF'_meas : AeStronglyMeasurable F' (μ.restrict (Ι a b)))
(hF'_meas : AEStronglyMeasurable F' (μ.restrict (Ι a b)))
(h_lipsch :
∀ᵐ t ∂μ, t ∈ Ι a b → LipschitzOnWith (Real.nnabs <| bound t) (fun x => F x t) (ball x₀ ε))
(bound_integrable : IntervalIntegrable (bound : ℝ → ℝ) μ a b)
Expand All @@ -101,9 +101,9 @@ assuming `F x₀` is integrable, `x ↦ F x a` is differentiable on an interval
(with interval radius independent of `a`) with derivative uniformly bounded by an integrable
function, and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `x₀`. -/
theorem hasDerivAt_integral_of_dominated_loc_of_deriv_le {F : 𝕜 → ℝ → E} {F' : 𝕜 → ℝ → E} {x₀ : 𝕜}
(ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (F x) (μ.restrict (Ι a b)))
(ε_pos : 0 < ε) (hF_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (F x) (μ.restrict (Ι a b)))
(hF_int : IntervalIntegrable (F x₀) μ a b)
(hF'_meas : AeStronglyMeasurable (F' x₀) (μ.restrict (Ι a b)))
(hF'_meas : AEStronglyMeasurable (F' x₀) (μ.restrict (Ι a b)))
(h_bound : ∀ᵐ t ∂μ, t ∈ Ι a b → ∀ x ∈ ball x₀ ε, ‖F' x t‖ ≤ bound t)
(bound_integrable : IntervalIntegrable bound μ a b)
(h_diff : ∀ᵐ t ∂μ, t ∈ Ι a b → ∀ x ∈ ball x₀ ε, HasDerivAt (fun x => F x t) (F' x t) x) :
Expand Down

0 comments on commit 4d066d3

Please sign in to comment.