Skip to content

Commit

Permalink
bump to nightly-2023-06-28-03
Browse files Browse the repository at this point in the history
  • Loading branch information
leanprover-community-bot committed Jun 28, 2023
1 parent c13c40e commit 79a0bd3
Show file tree
Hide file tree
Showing 27 changed files with 51 additions and 49 deletions.
4 changes: 2 additions & 2 deletions Archive/Imo/Imo2019Q2.lean
Expand Up @@ -458,7 +458,7 @@ theorem not_collinear_QPA₂ : ¬Collinear ℝ ({cfg.q, cfg.P, cfg.a₂} : Set P
have h : cospherical ({cfg.B, cfg.A, cfg.A₂} : Set Pt) :=
by
refine' cfg.triangle_ABC.circumsphere.cospherical.subset _
simp [Set.insert_subset, cfg.A_mem_circumsphere, cfg.B_mem_circumsphere,
simp [Set.insert_subset_iff, cfg.A_mem_circumsphere, cfg.B_mem_circumsphere,
cfg.A₂_mem_circumsphere]
exact h.affine_independent_of_ne cfg.A_ne_B.symm cfg.A₂_ne_B.symm cfg.A₂_ne_A.symm
#align imo2019_q2.imo2019q2_cfg.not_collinear_QPA₂ Imo2019Q2.Imo2019q2Cfg.not_collinear_QPA₂
Expand Down Expand Up @@ -656,7 +656,7 @@ theorem result : Concyclic ({cfg.P, cfg.q, cfg.p₁, cfg.q₁} : Set Pt) :=
refine' ⟨_, coplanar_of_fact_finrank_eq_two _⟩
rw [cospherical_iff_exists_sphere]
refine' ⟨cfg.ω, _⟩
simp only [Set.insert_subset, Set.singleton_subset_iff]
simp only [Set.insert_subset_iff, Set.singleton_subset_iff]
exact ⟨cfg.P_mem_ω, cfg.Q_mem_ω, cfg.P₁_mem_ω, cfg.Q₁_mem_ω⟩
#align imo2019_q2.imo2019q2_cfg.result Imo2019Q2.Imo2019q2Cfg.result

Expand Down
2 changes: 1 addition & 1 deletion Archive/Wiedijk100Theorems/AbelRuffini.lean
Expand Up @@ -154,7 +154,7 @@ theorem real_roots_Phi_ge (hab : b < a) : 2 ≤ Fintype.card ((Φ ℚ a b).rootS
have q_ne_zero : Φ ℚ a b ≠ 0 := (monic_Phi a b).NeZero
obtain ⟨x, y, hxy, hx, hy⟩ := real_roots_Phi_ge_aux a b hab
have key : ↑({x, y} : Finset ℝ) ⊆ (Φ ℚ a b).rootSet ℝ := by
simp [Set.insert_subset, mem_root_set_of_ne q_ne_zero, hx, hy]
simp [Set.insert_subset_iff, mem_root_set_of_ne q_ne_zero, hx, hy]
convert Fintype.card_le_of_embedding (Set.embeddingOfSubset _ _ key)
simp only [Finset.coe_sort_coe, Fintype.card_coe, Finset.card_singleton,
Finset.card_insert_of_not_mem (mt finset.mem_singleton.mp hxy)]
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/Algebra/BigOperators/Order.lean
Expand Up @@ -542,7 +542,7 @@ theorem prod_lt_prod_of_subset' (h : s ⊆ t) {i : ι} (ht : i ∈ t) (hs : i
exact lt_mul_of_one_lt_left' (∏ j in s, f j) hlt
_ ≤ ∏ j in t, f j := by
apply prod_le_prod_of_subset_of_one_le'
· simp [Finset.insert_subset, h, ht]
· simp [Finset.insert_subset_iff, h, ht]
· intro x hx h'x
simp only [mem_insert, not_or] at h'x
exact hle x hx h'x.2
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/Analysis/BoxIntegral/Partition/Split.lean
Expand Up @@ -356,7 +356,7 @@ theorem not_disjoint_imp_le_of_subset_of_mem_splitMany {I J Js : Box ι} {s : Fi
(H : ∀ i, {(i, J i), (i, J.upper i)} ⊆ s) (HJs : Js ∈ splitMany I s)
(Hn : ¬Disjoint (J : WithBot (Box ι)) Js) : Js ≤ J :=
by
simp only [Finset.insert_subset, Finset.singleton_subset_iff] at H
simp only [Finset.insert_subset_iff, Finset.singleton_subset_iff] at H
rcases box.not_disjoint_coe_iff_nonempty_inter.mp Hn with ⟨x, hx, hxs⟩
refine' fun y hy i => ⟨_, _⟩
· rcases split_many_le_split I (H i).1 HJs with ⟨Jl, Hmem : Jl ∈ split I i (J.lower i), Hle⟩
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/Analysis/Convex/Between.lean
Expand Up @@ -782,7 +782,7 @@ theorem sbtw_of_sbtw_of_sbtw_of_mem_affineSpan_pair [NoZeroSMulDivisors R V]
by
refine' affineSpan_pair_le_of_mem_of_mem (mem_affineSpan _ (Set.mem_range_self _)) _
have hle : line[R, t.points i₂, t.points i₃] ≤ affineSpan R (Set.range t.points) := by
refine' affineSpan_mono _ _; simp [Set.insert_subset]
refine' affineSpan_mono _ _; simp [Set.insert_subset_iff]
rw [AffineSubspace.le_def'] at hle
exact hle _ h₁.wbtw.mem_affine_span
rw [AffineSubspace.le_def'] at hle
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/Combinatorics/SimpleGraph/Basic.lean
Expand Up @@ -1960,7 +1960,7 @@ theorem Adj.card_commonNeighbors_lt_degree {G : SimpleGraph V} [DecidableRel G.A
constructor
· rw [Set.mem_toFinset]
apply not_mem_common_neighbors_right
· rw [Finset.insert_subset]
· rw [Finset.insert_subset_iff]
constructor
· simpa
· rw [neighbor_finset, Set.toFinset_subset_toFinset]
Expand Down
4 changes: 2 additions & 2 deletions Mathbin/Computability/TmToPartrec.lean
Expand Up @@ -2037,7 +2037,7 @@ theorem trStmts₁_supports {S q} (H₁ : (q : Λ').Supports S) (HS₁ : trStmts
have W := fun {q} => tr_stmts₁_self q
induction q <;> simp [tr_stmts₁] at HS₁ ⊢
any_goals
cases' Finset.insert_subset.1 HS₁ with h₁ h₂
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
Expand Down Expand Up @@ -2131,7 +2131,7 @@ theorem codeSupp'_supports {S c k} (H : codeSupp c k ⊆ S) : Supports (codeSupp
refine' supports_union.2 ⟨IHf H'.2, _⟩
refine' tr_stmts₁_supports' (tr_normal_supports _) (Finset.union_subset_right h) fun h => _
· simp only [code_supp', code_supp, Finset.union_subset_iff, cont_supp, tr_stmts₁,
Finset.insert_subset] at h H ⊢
Finset.insert_subset_iff] at h H ⊢
exact ⟨h.1, ⟨H.1.1, h⟩, H.2⟩
exact supports_singleton.2 (ret_supports <| Finset.union_subset_right H)
#align turing.partrec_to_TM2.code_supp'_supports Turing.PartrecToTM2.codeSupp'_supports
Expand Down
12 changes: 6 additions & 6 deletions Mathbin/Data/Finset/Basic.lean
Expand Up @@ -1504,10 +1504,10 @@ theorem ne_insert_of_not_mem (s t : Finset α) {a : α} (h : a ∉ s) : s ≠ in
#align finset.ne_insert_of_not_mem Finset.ne_insert_of_not_mem
-/

#print Finset.insert_subset /-
theorem insert_subset : insert a s ⊆ t ↔ a ∈ t ∧ s ⊆ t := by
#print Finset.insert_subset_iff /-
theorem insert_subset_iff : insert a s ⊆ t ↔ a ∈ t ∧ s ⊆ t := by
simp only [subset_iff, mem_insert, forall_eq, or_imp, forall_and]
#align finset.insert_subset Finset.insert_subset
#align finset.insert_subset Finset.insert_subset_iff
-/

#print Finset.subset_insert /-
Expand All @@ -1517,7 +1517,7 @@ theorem subset_insert (a : α) (s : Finset α) : s ⊆ insert a s := fun b => me

#print Finset.insert_subset_insert /-
theorem insert_subset_insert (a : α) {s t : Finset α} (h : s ⊆ t) : insert a s ⊆ insert a t :=
insert_subset.2 ⟨mem_insert_self _ _, Subset.trans h (subset_insert _ _)⟩
insert_subset_iff.2 ⟨mem_insert_self _ _, Subset.trans h (subset_insert _ _)⟩
#align finset.insert_subset_insert Finset.insert_subset_insert
-/

Expand Down Expand Up @@ -1601,7 +1601,7 @@ theorem induction_on' {α : Type _} {p : Finset α → Prop} [DecidableEq α] (S
(h₂ : ∀ {a s}, a ∈ S → s ⊆ S → a ∉ s → p s → p (insert a s)) : p S :=
@Finset.induction_on α (fun T => T ⊆ S → p T) _ S (fun _ => h₁)
(fun a s has hqs hs =>
let ⟨hS, sS⟩ := Finset.insert_subset.1 hs
let ⟨hS, sS⟩ := Finset.insert_subset_iff.1 hs
h₂ hS sS has (hqs sS))
(Finset.Subset.refl S)
#align finset.induction_on' Finset.induction_on'
Expand Down Expand Up @@ -2007,7 +2007,7 @@ theorem Directed.exists_mem_subset_of_finset_subset_biUnion {α ι : Type _} [hn
obtain ⟨j, hbj⟩ : ∃ j, b ∈ f j := by simpa [Set.mem_iUnion₂] using hbtc (t.mem_insert_self b)
rcases h j i with ⟨k, hk, hk'⟩
use k
rw [coe_insert, Set.insert_subset]
rw [coe_insert, Set.insert_subset_iff]
exact ⟨hk hbj, trans hti hk'⟩
#align directed.exists_mem_subset_of_finset_subset_bUnion Directed.exists_mem_subset_of_finset_subset_biUnion
-/
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/Data/Finset/NAry.lean
Expand Up @@ -305,7 +305,7 @@ theorem subset_image₂ {s : Set α} {t : Set β} (hu : ↑u ⊆ image2 f s t) :
haveI := Classical.decEq α
haveI := Classical.decEq β
refine' ⟨insert x s', insert y t', _⟩
simp_rw [coe_insert, Set.insert_subset]
simp_rw [coe_insert, Set.insert_subset_iff]
exact
⟨⟨hx, hs⟩, ⟨hy, hs'⟩,
insert_subset.2
Expand Down
12 changes: 6 additions & 6 deletions Mathbin/Data/Set/Basic.lean
Expand Up @@ -1556,10 +1556,10 @@ theorem insert_ne_self : insert a s ≠ s ↔ a ∉ s :=
#align set.insert_ne_self Set.insert_ne_self
-/

#print Set.insert_subset /-
theorem insert_subset : insert a s ⊆ t ↔ a ∈ t ∧ s ⊆ t := by
#print Set.insert_subset_iff /-
theorem insert_subset_iff : insert a s ⊆ t ↔ a ∈ t ∧ s ⊆ t := by
simp only [subset_def, or_imp, forall_and, forall_eq, mem_insert_iff]
#align set.insert_subset Set.insert_subset
#align set.insert_subset Set.insert_subset_iff
-/

#print Set.insert_subset_insert /-
Expand Down Expand Up @@ -1883,8 +1883,8 @@ theorem pair_comm (a b : α) : ({a, b} : Set α) = {b, a} :=
theorem pair_eq_pair_iff {x y z w : α} :
({x, y} : Set α) = {z, w} ↔ x = z ∧ y = w ∨ x = w ∧ y = z :=
by
simp only [Set.Subset.antisymm_iff, Set.insert_subset, Set.mem_insert_iff, Set.mem_singleton_iff,
Set.singleton_subset_iff]
simp only [Set.Subset.antisymm_iff, Set.insert_subset_iff, Set.mem_insert_iff,
Set.mem_singleton_iff, Set.singleton_subset_iff]
constructor
· tauto
· rintro (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩) <;> simp
Expand Down Expand Up @@ -3432,7 +3432,7 @@ theorem nontrivial_of_pair_subset {x y} (hxy : x ≠ y) (h : {x, y} ⊆ s) : s.N
#print Set.Nontrivial.pair_subset /-
theorem Nontrivial.pair_subset (hs : s.Nontrivial) : ∃ (x y : _) (hab : x ≠ y), {x, y} ⊆ s :=
let ⟨x, hx, y, hy, hxy⟩ := hs
⟨x, y, hxy, insert_subset.2 ⟨hx, singleton_subset_iff.2 hy⟩⟩
⟨x, y, hxy, insert_subset_iff.2 ⟨hx, singleton_subset_iff.2 hy⟩⟩
#align set.nontrivial.pair_subset Set.Nontrivial.pair_subset
-/

Expand Down
2 changes: 1 addition & 1 deletion Mathbin/FieldTheory/Adjoin.lean
Expand Up @@ -487,7 +487,7 @@ theorem adjoin_insert_adjoin (x : E) :
adjoin F (insert x (adjoin F S : Set E)) = adjoin F (insert x S) :=
le_antisymm
(adjoin_le_iff.mpr
(Set.insert_subset.mpr
(Set.insert_subset_iff.mpr
⟨subset_adjoin _ _ (Set.mem_insert _ _),
adjoin_le_iff.mpr (subset_adjoin_of_subset_right _ _ (Set.subset_insert _ _))⟩))
(adjoin.mono _ _ _ (Set.insert_subset_insert (subset_adjoin _ _)))
Expand Down
6 changes: 3 additions & 3 deletions Mathbin/Geometry/Euclidean/Angle/Sphere.lean
Expand Up @@ -131,7 +131,7 @@ theorem Cospherical.two_zsmul_oangle_eq {p₁ p₂ p₃ p₄ : P}
(hp₃p₁ : p₃ ≠ p₁) (hp₃p₄ : p₃ ≠ p₄) : (2 : ℤ) • ∡ p₁ p₂ p₄ = (2 : ℤ) • ∡ p₁ p₃ p₄ :=
by
obtain ⟨s, hs⟩ := cospherical_iff_exists_sphere.1 h
simp_rw [Set.insert_subset, Set.singleton_subset_iff, sphere.mem_coe] at hs
simp_rw [Set.insert_subset_iff, Set.singleton_subset_iff, sphere.mem_coe] at hs
exact sphere.two_zsmul_oangle_eq hs.1 hs.2.1 hs.2.2.1 hs.2.2.2 hp₂p₁ hp₂p₄ hp₃p₁ hp₃p₄
#align euclidean_geometry.cospherical.two_zsmul_oangle_eq EuclideanGeometry.Cospherical.two_zsmul_oangle_eq
-/
Expand Down Expand Up @@ -456,7 +456,7 @@ theorem cospherical_of_two_zsmul_oangle_eq_of_not_collinear {p₁ p₂ p₃ p₄
let t₂ : Affine.Triangle ℝ P := ⟨![p₁, p₃, p₄], affineIndependent_iff_not_collinear_set.2 hn'⟩
rw [cospherical_iff_exists_sphere]
refine' ⟨t₂.circumsphere, _⟩
simp_rw [Set.insert_subset, Set.singleton_subset_iff]
simp_rw [Set.insert_subset_iff, Set.singleton_subset_iff]
refine' ⟨t₂.mem_circumsphere 0, _, t₂.mem_circumsphere 1, t₂.mem_circumsphere 2⟩
rw [Affine.Triangle.circumsphere_eq_circumsphere_of_eq_of_eq_of_two_zsmul_oangle_eq
(by decide : (0 : Fin 3) ≠ 1) (by decide : (0 : Fin 3) ≠ 2) (by decide)
Expand Down Expand Up @@ -492,7 +492,7 @@ theorem cospherical_or_collinear_of_two_zsmul_oangle_eq {p₁ p₂ p₃ p₄ : P
let t : Affine.Triangle ℝ P := ⟨![p₂, p₃, p₄], affineIndependent_iff_not_collinear_set.2 hl⟩
rw [cospherical_iff_exists_sphere]
refine' ⟨t.circumsphere, _⟩
simp_rw [Set.insert_subset, Set.singleton_subset_iff]
simp_rw [Set.insert_subset_iff, Set.singleton_subset_iff]
exact ⟨t.mem_circumsphere 0, t.mem_circumsphere 1, t.mem_circumsphere 2⟩
have hc' : Collinear ℝ ({p₁, p₃, p₄} : Set P) := by
rwa [← collinear_iff_of_two_zsmul_oangle_eq h]
Expand Down
4 changes: 2 additions & 2 deletions Mathbin/Geometry/Euclidean/MongePoint.lean
Expand Up @@ -569,7 +569,7 @@ theorem affineSpan_orthocenter_point_le_altitude (t : Triangle ℝ P) (i : Fin 3
line[ℝ, t.orthocenter, t.points i] ≤ t.altitude i :=
by
refine' span_points_subset_coe_of_subset_coe _
rw [Set.insert_subset, Set.singleton_subset_iff]
rw [Set.insert_subset_iff, Set.singleton_subset_iff]
exact ⟨t.orthocenter_mem_altitude, t.mem_altitude i⟩
#align affine.triangle.affine_span_orthocenter_point_le_altitude Affine.Triangle.affineSpan_orthocenter_point_le_altitude

Expand All @@ -596,7 +596,7 @@ theorem altitude_replace_orthocenter_eq_affineSpan {t₁ t₂ : Triangle ℝ P}
· have hu : (Finset.univ : Finset (Fin 3)) = {j₁, j₂, j₃} := by clear h₁ h₂ h₃; decide!
rw [← Set.image_univ, ← Finset.coe_univ, hu, Finset.coe_insert, Finset.coe_insert,
Finset.coe_singleton, Set.image_insert_eq, Set.image_insert_eq, Set.image_singleton, h₁, h₂,
h₃, Set.insert_subset, Set.insert_subset, Set.singleton_subset_iff]
h₃, Set.insert_subset_iff, Set.insert_subset_iff, Set.singleton_subset_iff]
exact
⟨t₁.orthocenter_mem_affine_span, mem_affineSpan ℝ (Set.mem_range_self _),
mem_affineSpan ℝ (Set.mem_range_self _)⟩
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/Geometry/Euclidean/Sphere/Basic.lean
Expand Up @@ -348,7 +348,7 @@ theorem Cospherical.affineIndependent_of_mem_of_ne {s : Set P} (hs : Cospherical
AffineIndependent ℝ ![p₁, p₂, p₃] :=
by
refine' hs.affine_independent _ _
· simp [h₁, h₂, h₃, Set.insert_subset]
· simp [h₁, h₂, h₃, Set.insert_subset_iff]
· erw [Fin.cons_injective_iff, Fin.cons_injective_iff]
simp [h₁₂, h₁₃, h₂₃, Function.Injective]
#align euclidean_geometry.cospherical.affine_independent_of_mem_of_ne EuclideanGeometry.Cospherical.affineIndependent_of_mem_of_ne
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/GroupTheory/Perm/Cycle/Basic.lean
Expand Up @@ -1994,7 +1994,7 @@ theorem closure_cycle_coprime_swap {n : ℕ} {σ : Perm α} (h0 : Nat.coprime n
have h1' : is_cycle ((σ ^ n) ^ (m : ℤ)) := by rwa [← hm] at h1
replace h1' : is_cycle (σ ^ n) :=
h1'.of_pow (le_trans (support_pow_le σ n) (ge_of_eq (congr_arg support hm)))
rw [eq_top_iff, ← closure_cycle_adjacent_swap h1' h2' x, closure_le, Set.insert_subset]
rw [eq_top_iff, ← closure_cycle_adjacent_swap h1' h2' x, closure_le, Set.insert_subset_iff]
exact
⟨Subgroup.pow_mem (closure _) (subset_closure (Set.mem_insert σ _)) n,
set.singleton_subset_iff.mpr (subset_closure (Set.mem_insert_of_mem _ (Set.mem_singleton _)))⟩
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/GroupTheory/Perm/Cycle/Type.lean
Expand Up @@ -665,7 +665,7 @@ theorem subgroup_eq_top_of_swap_mem [DecidableEq α] {H : Subgroup (Perm α)}
have hσ3 : (σ : perm α).support = ⊤ :=
Finset.eq_univ_of_card (σ : perm α).support (hσ2.order_of.symm.trans hσ1)
have hσ4 : Subgroup.closure {↑σ, τ} = ⊤ := closure_prime_cycle_swap h0 hσ2 hσ3 h3
rw [eq_top_iff, ← hσ4, Subgroup.closure_le, Set.insert_subset, Set.singleton_subset_iff]
rw [eq_top_iff, ← hσ4, Subgroup.closure_le, Set.insert_subset_iff, Set.singleton_subset_iff]
exact ⟨Subtype.mem σ, h2⟩
#align equiv.perm.subgroup_eq_top_of_swap_mem Equiv.Perm.subgroup_eq_top_of_swap_mem
-/
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/LinearAlgebra/AffineSpace/AffineSubspace.lean
Expand Up @@ -1721,7 +1721,7 @@ theorem vadd_right_mem_affineSpan_pair {p₁ p₂ : P} {v : V} :
theorem affineSpan_pair_le_of_mem_of_mem {p₁ p₂ : P} {s : AffineSubspace k P} (hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s) : line[k, p₁, p₂] ≤ s :=
by
rw [affineSpan_le, Set.insert_subset, Set.singleton_subset_iff]
rw [affineSpan_le, Set.insert_subset_iff, Set.singleton_subset_iff]
exact ⟨hp₁, hp₂⟩
#align affine_span_pair_le_of_mem_of_mem affineSpan_pair_le_of_mem_of_mem
-/
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/LinearAlgebra/AffineSpace/FiniteDimensional.lean
Expand Up @@ -638,7 +638,7 @@ theorem Collinear.mem_affineSpan_of_mem_of_ne {s : Set P} (h : Collinear k s) {p
span of the whole set. -/
theorem Collinear.affineSpan_eq_of_ne {s : Set P} (h : Collinear k s) {p₁ p₂ : P} (hp₁ : p₁ ∈ s)
(hp₂ : p₂ ∈ s) (hp₁p₂ : p₁ ≠ p₂) : line[k, p₁, p₂] = affineSpan k s :=
le_antisymm (affineSpan_mono _ (Set.insert_subset.2 ⟨hp₁, Set.singleton_subset_iff.2 hp₂⟩))
le_antisymm (affineSpan_mono _ (Set.insert_subset_iff.2 ⟨hp₁, Set.singleton_subset_iff.2 hp₂⟩))
(affineSpan_le.2 fun p hp => h.mem_affineSpan_of_mem_of_ne hp₁ hp₂ hp hp₁p₂)
#align collinear.affine_span_eq_of_ne Collinear.affineSpan_eq_of_ne
-/
Expand Down
4 changes: 2 additions & 2 deletions Mathbin/LinearAlgebra/Span.lean
Expand Up @@ -146,7 +146,7 @@ alias Submodule.map_span_le ← _root_.linear_map.map_span_le
theorem span_insert_zero : span R (insert (0 : M) s) = span R s :=
by
refine' le_antisymm _ (Submodule.span_mono (Set.subset_insert 0 s))
rw [span_le, Set.insert_subset]
rw [span_le, Set.insert_subset_iff]
exact ⟨by simp only [SetLike.mem_coe, Submodule.zero_mem], Submodule.subset_span⟩
#align submodule.span_insert_zero Submodule.span_insert_zero
-/
Expand Down Expand Up @@ -627,7 +627,7 @@ theorem span_insert (x) (s : Set M) : span R (insert x s) = span R ({x} : Set M)

#print Submodule.span_insert_eq_span /-
theorem span_insert_eq_span (h : x ∈ span R s) : span R (insert x s) = span R s :=
span_eq_of_le _ (Set.insert_subset.mpr ⟨h, subset_span⟩) (span_mono <| subset_insert _ _)
span_eq_of_le _ (Set.insert_subset_iff.mpr ⟨h, subset_span⟩) (span_mono <| subset_insert _ _)
#align submodule.span_insert_eq_span Submodule.span_insert_eq_span
-/

Expand Down
4 changes: 2 additions & 2 deletions Mathbin/Order/CompactlyGenerated.lean
Expand Up @@ -235,7 +235,7 @@ theorem WellFounded.isSupFiniteCompact (h : WellFounded ((· > ·) : α → α
·
classical
rw [eq_of_le_of_not_lt (Finset.sup_mono (t.subset_insert y))
(hm _ ⟨insert y t, by simp [Set.insert_subset, hy, ht₁]⟩)]
(hm _ ⟨insert y t, by simp [Set.insert_subset_iff, hy, ht₁]⟩)]
simp
· rw [Finset.sup_id_eq_sSup]
exact sSup_le_sSup ht₁
Expand Down Expand Up @@ -499,7 +499,7 @@ theorem CompleteLattice.setIndependent_iff_finite {s : Set α} :
have h' := (h (insert a t) _ (t.mem_insert_self a)).eq_bot
· rwa [Finset.coe_insert, Set.insert_diff_self_of_not_mem] at h'
exact fun con => ((Set.mem_diff a).1 (ht Con)).2 (Set.mem_singleton a)
· rw [Finset.coe_insert, Set.insert_subset]
· rw [Finset.coe_insert, Set.insert_subset_iff]
exact ⟨ha, Set.Subset.trans ht (Set.diff_subset _ _)⟩⟩
#align complete_lattice.set_independent_iff_finite CompleteLattice.setIndependent_iff_finite
-/
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/Order/Filter/CountableInter.lean
Expand Up @@ -172,7 +172,7 @@ def Filter.ofCountableInter (l : Set (Set α))
sets_of_superset := h_mono
inter_sets s t hs ht :=
sInter_pair s t ▸
hp _ ((countable_singleton _).insert _) (insert_subset.2 ⟨hs, singleton_subset_iff.2 ht⟩)
hp _ ((countable_singleton _).insert _) (insert_subset_iff.2 ⟨hs, singleton_subset_iff.2 ht⟩)
#align filter.of_countable_Inter Filter.ofCountableInter
-/

Expand Down
4 changes: 2 additions & 2 deletions Mathbin/RingTheory/Adjoin/Basic.lean
Expand Up @@ -268,7 +268,7 @@ theorem adjoin_image (f : A →ₐ[R] B) (s : Set A) : adjoin R (f '' s) = (adjo
theorem adjoin_insert_adjoin (x : A) : adjoin R (insert x ↑(adjoin R s)) = adjoin R (insert x s) :=
le_antisymm
(adjoin_le
(Set.insert_subset.mpr
(Set.insert_subset_iff.mpr
⟨subset_adjoin (Set.mem_insert _ _), adjoin_mono (Set.subset_insert _ _)⟩))
(Algebra.adjoin_mono (Set.insert_subset_insert Algebra.subset_adjoin))
#align algebra.adjoin_insert_adjoin Algebra.adjoin_insert_adjoin
Expand Down Expand Up @@ -307,7 +307,7 @@ theorem adjoin_inl_union_inr_eq_prod (s) (t) :
by
apply le_antisymm
·
simp only [adjoin_le_iff, Set.insert_subset, Subalgebra.zero_mem, Subalgebra.one_mem,
simp only [adjoin_le_iff, Set.insert_subset_iff, Subalgebra.zero_mem, Subalgebra.one_mem,
subset_adjoin,-- the rest comes from `squeeze_simp`
Set.union_subset_iff,
LinearMap.coe_inl, Set.mk_preimage_prod_right, Set.image_subset_iff, SetLike.mem_coe,
Expand Down
2 changes: 1 addition & 1 deletion Mathbin/RingTheory/Finiteness.lean
Expand Up @@ -114,7 +114,7 @@ theorem exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul {R : Type _} [CommR
rwa [mem_comap, span_empty, smul_bot, mem_bot] at hrn
apply ih; rcases H with ⟨r, hr1, hrn, hs⟩
rw [← Set.singleton_union, span_union, smul_sup] at hrn
rw [Set.insert_subset] at hs
rw [Set.insert_subset_iff] at hs
have : ∃ c : R, c - 1 ∈ I ∧ c • i ∈ I • span R s :=
by
specialize hrn hs.1; rw [mem_comap, mem_sup] at hrn
Expand Down
4 changes: 3 additions & 1 deletion Mathbin/RingTheory/IntegralClosure.lean
Expand Up @@ -371,7 +371,9 @@ theorem isIntegral_of_mem_of_FG (S : Subalgebra R A) (HS : S.toSubmodule.FG) (x
constructor <;> intro hz
·
exact
(span_le.2 (Set.insert_subset.2 ⟨(Algebra.adjoin S₀ ↑y).one_mem, Algebra.subset_adjoin⟩)) hz
(span_le.2
(Set.insert_subset_iff.2 ⟨(Algebra.adjoin S₀ ↑y).one_mem, Algebra.subset_adjoin⟩))
hz
· rw [Subalgebra.mem_toSubmodule, Algebra.mem_adjoin_iff] at hz
suffices Subring.closure (Set.range ⇑(algebraMap (↥S₀) A) ∪ ↑y) ≤ S₁ by exact this hz
refine' Subring.closure_le.2 (Set.union_subset _ fun t ht => subset_span <| Or.inr ht)
Expand Down

0 comments on commit 79a0bd3

Please sign in to comment.