Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RISC-V Devicetree fixes for v6.6-rc3 #40

Closed
wants to merge 1 commit into from

Conversation

bjoto
Copy link

@bjoto bjoto commented Sep 16, 2023

Pull request for series with
subject: RISC-V Devicetree fixes for v6.6-rc3
version: 1
url: https://patchwork.kernel.org/project/linux-riscv/list/?series=784925

@bjoto
Copy link
Author

bjoto commented Sep 16, 2023

Upstream branch: 8eb8fe6
series: https://patchwork.kernel.org/project/linux-riscv/list/?series=784925
version: 1

Pull request is NOT updated. Failed to apply https://patchwork.kernel.org/project/linux-riscv/list/?series=784925
error message:

Cmd('git') failed due to: exit code(128)
  cmdline: git am --3way
  stdout: 'Patch is empty.
When you have resolved this problem, run "git am --continue".
If you prefer to skip this patch, run "git am --skip" instead.
To record the empty patch as an empty commit, run "git am --allow-empty".
To restore the original branch and stop patching, run "git am --abort".'

conflict:


@bjoto
Copy link
Author

bjoto commented Sep 18, 2023

At least one diff in series https://patchwork.kernel.org/project/linux-riscv/list/?series=784925 irrelevant now. Closing PR.

@bjoto bjoto closed this Sep 18, 2023
@bjoto bjoto deleted the series/784925=>fixes branch September 18, 2023 12:57
bjoto pushed a commit that referenced this pull request Feb 2, 2024
A last minute revert in 6.7-final introduced a potential deadlock when
enabling ASPM during probe of Qualcomm PCIe controllers as reported by
lockdep:

  ============================================
  WARNING: possible recursive locking detected
  6.7.0 #40 Not tainted
  --------------------------------------------
  kworker/u16:5/90 is trying to acquire lock:
  ffffacfa78ced000 (pci_bus_sem){++++}-{3:3}, at: pcie_aspm_pm_state_change+0x58/0xdc

              but task is already holding lock:
  ffffacfa78ced000 (pci_bus_sem){++++}-{3:3}, at: pci_walk_bus+0x34/0xbc

              other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(pci_bus_sem);
    lock(pci_bus_sem);

               *** DEADLOCK ***

  Call trace:
   print_deadlock_bug+0x25c/0x348
   __lock_acquire+0x10a4/0x2064
   lock_acquire+0x1e8/0x318
   down_read+0x60/0x184
   pcie_aspm_pm_state_change+0x58/0xdc
   pci_set_full_power_state+0xa8/0x114
   pci_set_power_state+0xc4/0x120
   qcom_pcie_enable_aspm+0x1c/0x3c [pcie_qcom]
   pci_walk_bus+0x64/0xbc
   qcom_pcie_host_post_init_2_7_0+0x28/0x34 [pcie_qcom]

The deadlock can easily be reproduced on machines like the Lenovo ThinkPad
X13s by adding a delay to increase the race window during asynchronous
probe where another thread can take a write lock.

Add a new pci_set_power_state_locked() and associated helper functions that
can be called with the PCI bus semaphore held to avoid taking the read lock
twice.

Link: https://lore.kernel.org/r/ZZu0qx2cmn7IwTyQ@hovoldconsulting.com
Link: https://lore.kernel.org/r/20240130100243.11011-1-johan+linaro@kernel.org
Fixes: f93e71a ("Revert "PCI/ASPM: Remove pcie_aspm_pm_state_change()"")
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: <stable@vger.kernel.org>	# 6.7
bjoto pushed a commit that referenced this pull request Mar 14, 2024
Currently our IO accessors all use register addressing without offsets,
but we could safely use offset addressing (without writeback) to
simplify and optimize the generated code.

To function correctly under a hypervisor which emulates IO accesses, we
must ensure that any faulting/trapped IO access results in an ESR_ELx
value with ESR_ELX.ISS.ISV=1 and with the tranfer register described in
ESR_ELx.ISS.SRT. This means that we can only use loads/stores of a
single general purpose register (or the zero register), and must avoid
writeback addressing modes. However, we can use immediate offset
addressing modes, as these still provide ESR_ELX.ISS.ISV=1 and a valid
ESR_ELx.ISS.SRT when those accesses fault at Stage-2.

Currently we only use register addressing without offsets. We use the
"r" constraint to place the address into a register, and manually
generate the register addressing by surrounding the resulting register
operand with square braces, e.g.

| static __always_inline void __raw_writeq(u64 val, volatile void __iomem *addr)
| {
|         asm volatile("str %x0, [%1]" : : "rZ" (val), "r" (addr));
| }

Due to this, sequences of adjacent accesses need to generate addresses
using separate instructions. For example, the following code:

| void writeq_zero_8_times(void *ptr)
| {
|        writeq_relaxed(0, ptr + 8 * 0);
|        writeq_relaxed(0, ptr + 8 * 1);
|        writeq_relaxed(0, ptr + 8 * 2);
|        writeq_relaxed(0, ptr + 8 * 3);
|        writeq_relaxed(0, ptr + 8 * 4);
|        writeq_relaxed(0, ptr + 8 * 5);
|        writeq_relaxed(0, ptr + 8 * 6);
|        writeq_relaxed(0, ptr + 8 * 7);
| }

... is compiled to:

| <writeq_zero_8_times>:
|     str     xzr, [x0]
|     add     x1, x0, #0x8
|     str     xzr, [x1]
|     add     x1, x0, #0x10
|     str     xzr, [x1]
|     add     x1, x0, #0x18
|     str     xzr, [x1]
|     add     x1, x0, #0x20
|     str     xzr, [x1]
|     add     x1, x0, #0x28
|     str     xzr, [x1]
|     add     x1, x0, #0x30
|     str     xzr, [x1]
|     add     x0, x0, #0x38
|     str     xzr, [x0]
|     ret

As described above, we could safely use immediate offset addressing,
which would allow the ADDs to be folded into the address generation for
the STRs, resulting in simpler and smaller generated assembly. We can do
this by using the "o" constraint to allow the compiler to generate
offset addressing (without writeback) for a memory operand, e.g.

| static __always_inline void __raw_writeq(u64 val, volatile void __iomem *addr)
| {
|         volatile u64 __iomem *ptr = addr;
|         asm volatile("str %x0, %1" : : "rZ" (val), "o" (*ptr));
| }

... which results in the earlier code sequence being compiled to:

| <writeq_zero_8_times>:
|     str     xzr, [x0]
|     str     xzr, [x0, #8]
|     str     xzr, [x0, #16]
|     str     xzr, [x0, #24]
|     str     xzr, [x0, #32]
|     str     xzr, [x0, #40]
|     str     xzr, [x0, #48]
|     str     xzr, [x0, #56]
|     ret

As Will notes at:

  https://lore.kernel.org/linux-arm-kernel/20240117160528.GA3398@willie-the-truck/

... some compilers struggle with a plain "o" constraint, so it's
preferable to use "Qo", where the additional "Q" constraint permits
using non-offset register addressing.

This patch modifies our IO write accessors to use "Qo" constraints,
resulting in the better code generation described above. The IO read
accessors are left as-is because ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE
requires that non-offset register addressing is used, as the LDAR
instruction does not support offset addressing.

When compiling v6.8-rc1 defconfig with GCC 13.2.0, this saves ~4KiB of
text:

| [mark@lakrids:~/src/linux]% ls -al vmlinux-*
| -rwxr-xr-x 1 mark mark 153960576 Jan 23 12:01 vmlinux-after
| -rwxr-xr-x 1 mark mark 153862192 Jan 23 11:57 vmlinux-before
|
| [mark@lakrids:~/src/linux]% size vmlinux-before vmlinux-after
|    text    data     bss     dec     hex filename
| 26708921        16690350         622736 44022007        29fb8f7 vmlinux-before
| 26704761        16690414         622736 44017911        29fa8f7 vmlinux-after

... though due to internal alignment of sections, this has no impact on
the size of the resulting Image:

| [mark@lakrids:~/src/linux]% ls -al Image-*
| -rw-r--r-- 1 mark mark 43590144 Jan 23 12:01 Image-after
| -rw-r--r-- 1 mark mark 43590144 Jan 23 11:57 Image-before

Aside from the better code generation, there should be no functional
change as a result of this patch. I have lightly tested this patch,
including booting under KVM (where some devices such as PL011 are
emulated).

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240124111259.874975-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
1 participant