Skip to content

Commit

Permalink
[CVP][LVI] Add support for vectors (#97428)
Browse files Browse the repository at this point in the history
The core change here is to add support for converting vector constants
into constant ranges. The rest is just relaxing isIntegerTy() checks and
making sure we don't use APIs that assume vectors.

There are a couple of places that don't support vectors yet, most
notably the "simplest" fold (comparisons to a constant) isn't supported
yet. I'll leave these to a followup.
  • Loading branch information
nikic committed Jul 3, 2024
1 parent b76dd4e commit 1eec81a
Show file tree
Hide file tree
Showing 4 changed files with 83 additions and 63 deletions.
32 changes: 28 additions & 4 deletions llvm/lib/Analysis/LazyValueInfo.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -650,7 +650,7 @@ LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) {
if (PT && isKnownNonZero(BBI, DL))
return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));

if (BBI->getType()->isIntegerTy()) {
if (BBI->getType()->isIntOrIntVectorTy()) {
if (auto *CI = dyn_cast<CastInst>(BBI))
return solveBlockValueCast(CI, BB);

Expand Down Expand Up @@ -836,6 +836,24 @@ void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
}
}

static ConstantRange getConstantRangeFromFixedVector(Constant *C,
FixedVectorType *Ty) {
unsigned BW = Ty->getScalarSizeInBits();
ConstantRange CR = ConstantRange::getEmpty(BW);
for (unsigned I = 0; I < Ty->getNumElements(); ++I) {
Constant *Elem = C->getAggregateElement(I);
if (!Elem)
return ConstantRange::getFull(BW);
if (isa<PoisonValue>(Elem))
continue;
auto *CI = dyn_cast<ConstantInt>(Elem);
if (!CI)
return ConstantRange::getFull(BW);
CR = CR.unionWith(CI->getValue());
}
return CR;
}

static ConstantRange toConstantRange(const ValueLatticeElement &Val,
Type *Ty, bool UndefAllowed = false) {
assert(Ty->isIntOrIntVectorTy() && "Must be integer type");
Expand All @@ -844,6 +862,13 @@ static ConstantRange toConstantRange(const ValueLatticeElement &Val,
unsigned BW = Ty->getScalarSizeInBits();
if (Val.isUnknown())
return ConstantRange::getEmpty(BW);
if (Val.isConstant() && Ty->isVectorTy()) {
if (auto *CI = dyn_cast_or_null<ConstantInt>(
Val.getConstant()->getSplatValue(/*AllowPoison=*/true)))
return ConstantRange(CI->getValue());
if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
return getConstantRangeFromFixedVector(Val.getConstant(), VTy);
}
return ConstantRange::getFull(BW);
}

Expand Down Expand Up @@ -968,7 +993,7 @@ LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) {
return std::nullopt;
const ConstantRange &LHSRange = *LHSRes;

const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
const unsigned ResultBitWidth = CI->getType()->getScalarSizeInBits();

// NOTE: We're currently limited by the set of operations that ConstantRange
// can evaluate symbolically. Enhancing that set will allows us to analyze
Expand Down Expand Up @@ -1108,7 +1133,7 @@ LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred,
const APInt &Offset,
Instruction *CxtI,
bool UseBlockValue) {
ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
ConstantRange RHSRange(RHS->getType()->getScalarSizeInBits(),
/*isFullSet=*/true);
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
RHSRange = ConstantRange(CI->getValue());
Expand Down Expand Up @@ -1728,7 +1753,6 @@ Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {

ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
bool UndefAllowed) {
assert(V->getType()->isIntegerTy());
BasicBlock *BB = CxtI->getParent();
ValueLatticeElement Result =
getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI);
Expand Down
53 changes: 10 additions & 43 deletions llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -288,9 +288,8 @@ static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
}

static bool processICmp(ICmpInst *Cmp, LazyValueInfo *LVI) {
// Only for signed relational comparisons of scalar integers.
if (Cmp->getType()->isVectorTy() ||
!Cmp->getOperand(0)->getType()->isIntegerTy())
// Only for signed relational comparisons of integers.
if (!Cmp->getOperand(0)->getType()->isIntOrIntVectorTy())
return false;

if (!Cmp->isSigned())
Expand Down Expand Up @@ -505,12 +504,8 @@ static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
// because it is negation-invariant.
static bool processAbsIntrinsic(IntrinsicInst *II, LazyValueInfo *LVI) {
Value *X = II->getArgOperand(0);
Type *Ty = X->getType();
if (!Ty->isIntegerTy())
return false;

bool IsIntMinPoison = cast<ConstantInt>(II->getArgOperand(1))->isOne();
APInt IntMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
APInt IntMin = APInt::getSignedMinValue(X->getType()->getScalarSizeInBits());
ConstantRange Range = LVI->getConstantRangeAtUse(
II->getOperandUse(0), /*UndefAllowed*/ IsIntMinPoison);

Expand Down Expand Up @@ -679,15 +674,13 @@ static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
}

if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
if (willNotOverflow(WO, LVI))
return processOverflowIntrinsic(WO, LVI);
}
}

if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
if (willNotOverflow(SI, LVI))
return processSaturatingInst(SI, LVI);
}
}

bool Changed = false;
Expand Down Expand Up @@ -761,11 +754,10 @@ static bool narrowSDivOrSRem(BinaryOperator *Instr, const ConstantRange &LCR,
const ConstantRange &RCR) {
assert(Instr->getOpcode() == Instruction::SDiv ||
Instr->getOpcode() == Instruction::SRem);
assert(!Instr->getType()->isVectorTy());

// Find the smallest power of two bitwidth that's sufficient to hold Instr's
// operands.
unsigned OrigWidth = Instr->getType()->getIntegerBitWidth();
unsigned OrigWidth = Instr->getType()->getScalarSizeInBits();

// What is the smallest bit width that can accommodate the entire value ranges
// of both of the operands?
Expand All @@ -788,7 +780,7 @@ static bool narrowSDivOrSRem(BinaryOperator *Instr, const ConstantRange &LCR,

++NumSDivSRemsNarrowed;
IRBuilder<> B{Instr};
auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
Instr->getName() + ".lhs.trunc");
auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
Expand All @@ -809,7 +801,6 @@ static bool expandUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
Type *Ty = Instr->getType();
assert(Instr->getOpcode() == Instruction::UDiv ||
Instr->getOpcode() == Instruction::URem);
assert(!Ty->isVectorTy());
bool IsRem = Instr->getOpcode() == Instruction::URem;

Value *X = Instr->getOperand(0);
Expand Down Expand Up @@ -892,7 +883,6 @@ static bool narrowUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
const ConstantRange &YCR) {
assert(Instr->getOpcode() == Instruction::UDiv ||
Instr->getOpcode() == Instruction::URem);
assert(!Instr->getType()->isVectorTy());

// Find the smallest power of two bitwidth that's sufficient to hold Instr's
// operands.
Expand All @@ -905,12 +895,12 @@ static bool narrowUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,

// NewWidth might be greater than OrigWidth if OrigWidth is not a power of
// two.
if (NewWidth >= Instr->getType()->getIntegerBitWidth())
if (NewWidth >= Instr->getType()->getScalarSizeInBits())
return false;

++NumUDivURemsNarrowed;
IRBuilder<> B{Instr};
auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
Instr->getName() + ".lhs.trunc");
auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
Expand All @@ -929,9 +919,6 @@ static bool narrowUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
assert(Instr->getOpcode() == Instruction::UDiv ||
Instr->getOpcode() == Instruction::URem);
if (Instr->getType()->isVectorTy())
return false;

ConstantRange XCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(0),
/*UndefAllowed*/ false);
// Allow undef for RHS, as we can assume it is division by zero UB.
Expand All @@ -946,7 +933,6 @@ static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
static bool processSRem(BinaryOperator *SDI, const ConstantRange &LCR,
const ConstantRange &RCR, LazyValueInfo *LVI) {
assert(SDI->getOpcode() == Instruction::SRem);
assert(!SDI->getType()->isVectorTy());

if (LCR.abs().icmp(CmpInst::ICMP_ULT, RCR.abs())) {
SDI->replaceAllUsesWith(SDI->getOperand(0));
Expand Down Expand Up @@ -1006,7 +992,6 @@ static bool processSRem(BinaryOperator *SDI, const ConstantRange &LCR,
static bool processSDiv(BinaryOperator *SDI, const ConstantRange &LCR,
const ConstantRange &RCR, LazyValueInfo *LVI) {
assert(SDI->getOpcode() == Instruction::SDiv);
assert(!SDI->getType()->isVectorTy());

// Check whether the division folds to a constant.
ConstantRange DivCR = LCR.sdiv(RCR);
Expand Down Expand Up @@ -1064,9 +1049,6 @@ static bool processSDiv(BinaryOperator *SDI, const ConstantRange &LCR,
static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
assert(Instr->getOpcode() == Instruction::SDiv ||
Instr->getOpcode() == Instruction::SRem);
if (Instr->getType()->isVectorTy())
return false;

ConstantRange LCR =
LVI->getConstantRangeAtUse(Instr->getOperandUse(0), /*AllowUndef*/ false);
// Allow undef for RHS, as we can assume it is division by zero UB.
Expand All @@ -1085,12 +1067,9 @@ static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
}

static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
if (SDI->getType()->isVectorTy())
return false;

ConstantRange LRange =
LVI->getConstantRangeAtUse(SDI->getOperandUse(0), /*UndefAllowed*/ false);
unsigned OrigWidth = SDI->getType()->getIntegerBitWidth();
unsigned OrigWidth = SDI->getType()->getScalarSizeInBits();
ConstantRange NegOneOrZero =
ConstantRange(APInt(OrigWidth, (uint64_t)-1, true), APInt(OrigWidth, 1));
if (NegOneOrZero.contains(LRange)) {
Expand All @@ -1117,9 +1096,6 @@ static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
}

static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
if (SDI->getType()->isVectorTy())
return false;

const Use &Base = SDI->getOperandUse(0);
if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
.isAllNonNegative())
Expand All @@ -1138,9 +1114,6 @@ static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
}

static bool processPossibleNonNeg(PossiblyNonNegInst *I, LazyValueInfo *LVI) {
if (I->getType()->isVectorTy())
return false;

if (I->hasNonNeg())
return false;

Expand All @@ -1164,9 +1137,6 @@ static bool processUIToFP(UIToFPInst *UIToFP, LazyValueInfo *LVI) {
}

static bool processSIToFP(SIToFPInst *SIToFP, LazyValueInfo *LVI) {
if (SIToFP->getType()->isVectorTy())
return false;

const Use &Base = SIToFP->getOperandUse(0);
if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
.isAllNonNegative())
Expand All @@ -1187,9 +1157,6 @@ static bool processSIToFP(SIToFPInst *SIToFP, LazyValueInfo *LVI) {
static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
using OBO = OverflowingBinaryOperator;

if (BinOp->getType()->isVectorTy())
return false;

bool NSW = BinOp->hasNoSignedWrap();
bool NUW = BinOp->hasNoUnsignedWrap();
if (NSW && NUW)
Expand Down
4 changes: 1 addition & 3 deletions llvm/test/Transforms/CorrelatedValuePropagation/icmp.ll
Original file line number Diff line number Diff line change
Expand Up @@ -1246,13 +1246,11 @@ define i1 @non_const_range_minmax(i8 %a, i8 %b) {
ret i1 %cmp1
}

; FIXME: Also support vectors.
define <2 x i1> @non_const_range_minmax_vec(<2 x i8> %a, <2 x i8> %b) {
; CHECK-LABEL: @non_const_range_minmax_vec(
; CHECK-NEXT: [[A2:%.*]] = call <2 x i8> @llvm.umin.v2i8(<2 x i8> [[A:%.*]], <2 x i8> <i8 10, i8 10>)
; CHECK-NEXT: [[B2:%.*]] = call <2 x i8> @llvm.umax.v2i8(<2 x i8> [[B:%.*]], <2 x i8> <i8 11, i8 11>)
; CHECK-NEXT: [[CMP1:%.*]] = icmp ult <2 x i8> [[A2]], [[B2]]
; CHECK-NEXT: ret <2 x i1> [[CMP1]]
; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
;
%a2 = call <2 x i8> @llvm.umin.v2i8(<2 x i8> %a, <2 x i8> <i8 10, i8 10>)
%b2 = call <2 x i8> @llvm.umax.v2i8(<2 x i8> %b, <2 x i8> <i8 11, i8 11>)
Expand Down
Loading

0 comments on commit 1eec81a

Please sign in to comment.