Skip to content

Commit

Permalink
[mlir][tensor][linalg] Add a pattern that generalizes tensor.unpack op.
Browse files Browse the repository at this point in the history
The pattern generalizes a tensor::UnPackOp into a sequence of tensor +
Linalg ops, when the outer dims are all 1s. It uses the trick of
rank-reduced tensor.extract_slice to get the tile; transpose the tile;
extract sub tile for incomplete cases if needed; use tensor.insert_slice
to insert it to the destination tensor.

Reviewed By: tyb0807, chelini

Differential Revision: https://reviews.llvm.org/D140254
  • Loading branch information
hanhanW committed Dec 20, 2022
1 parent aee1ade commit 3ebc6be
Show file tree
Hide file tree
Showing 4 changed files with 281 additions and 9 deletions.
10 changes: 10 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
Expand Up @@ -882,6 +882,16 @@ struct GeneralizeOuterUnitDimsPackOpPattern
PatternRewriter &rewriter) const override;
};

/// Rewrites a tensor::UnPackOp into a sequence of rank-reduced extract_slice op
/// + transpose op + insert_slice op, where the tensor::UnPackOp has outer dims
/// being all 1s.
struct GeneralizeOuterUnitDimsUnPackOpPattern
: public OpRewritePattern<tensor::UnPackOp> {
using OpRewritePattern<tensor::UnPackOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::UnPackOp unpackOp,
PatternRewriter &rewriter) const override;
};

/// Populates `patterns` with patterns that vectorize tensor.pad.
/// These patterns are meant to apply in a complementary fashion. Benefits
/// are used to encode a certain ordering of pattern application. To avoid
Expand Down
96 changes: 88 additions & 8 deletions mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
Expand Up @@ -512,6 +512,17 @@ static Value getPackOpSourceOrPaddedSource(OpBuilder &builder,
/*nofold=*/false, loc, builder);
}

static SmallVector<int64_t>
getPackUnpackNormalizedInnerPerm(int rank, ArrayRef<int64_t> innerDimsPos) {
constexpr int64_t kNonTiledMarker = -1;
SmallVector<int64_t> vec(rank, kNonTiledMarker);
for (auto [index, value] : llvm::enumerate(innerDimsPos))
vec[value] = index;
SmallVector<int64_t> perm = llvm::to_vector(llvm::make_filter_range(
vec, [&](int64_t v) { return v != kNonTiledMarker; }));
return perm;
}

LogicalResult GeneralizeOuterUnitDimsPackOpPattern::matchAndRewrite(
tensor::PackOp packOp, PatternRewriter &rewriter) const {
// TODO: support the case that outer dimensions are not all 1s A
Expand Down Expand Up @@ -556,14 +567,8 @@ LogicalResult GeneralizeOuterUnitDimsPackOpPattern::matchAndRewrite(
loc, readType, input, readOffsets, readSizes, readStrides);

// 2. Transpose the tile to match the inner tile order.
constexpr int64_t kNonTiledMarker = -1;
ArrayRef<int64_t> innerDimsPos = packOp.getInnerDimsPos();
SmallVector<int64_t> vec(srcRank, kNonTiledMarker);
for (auto [index, value] : llvm::enumerate(innerDimsPos))
vec[value] = index;
SmallVector<int64_t> perm = llvm::to_vector(llvm::make_filter_range(
vec, [&](int64_t v) { return v != kNonTiledMarker; }));

SmallVector<int64_t> perm =
getPackUnpackNormalizedInnerPerm(srcRank, packOp.getInnerDimsPos());
SmallVector<int64_t> transpShape = readShape;
applyPermutationToVector<int64_t>(transpShape, perm);

Expand All @@ -587,6 +592,81 @@ LogicalResult GeneralizeOuterUnitDimsPackOpPattern::matchAndRewrite(
return success();
}

LogicalResult GeneralizeOuterUnitDimsUnPackOpPattern::matchAndRewrite(
tensor::UnPackOp unpackOp, PatternRewriter &rewriter) const {
int64_t srcRank = unpackOp.getSourceRank();
int64_t destRank = unpackOp.getDestRank();
ArrayRef<int64_t> srcShape = unpackOp.getSourceType().getShape();
if (llvm::any_of(srcShape.take_front(destRank),
[](int64_t val) { return val != 1; })) {
return rewriter.notifyMatchFailure(
unpackOp, "require the outer dimension of the result are all 1s");
}

// 1. Use rank-reduced tensor.extract_slice op to extract the tile.
Location loc = unpackOp.getLoc();
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);

auto mixedTiles = unpackOp.getMixedTiles();
SmallVector<OpFoldResult> readSizes(destRank, oneIdxAttr);
readSizes.append(mixedTiles.begin(), mixedTiles.end());

// Explicitly create the type for extract_slice op because the inner tile
// size could be 1. We want to represent the whole inner tile in this case.
ArrayRef<int64_t> readShape = srcShape.drop_front(destRank);
Type elemType = unpackOp.getSourceType().getElementType();
auto readType = RankedTensorType::get(readShape, elemType);
Value innerTile = rewriter.create<tensor::ExtractSliceOp>(
loc, readType, unpackOp.getSource(), readOffsets, readSizes, readStrides);

// 2. Transpose the tile to match the outer corresponding tile order.
ArrayRef<int64_t> innerDimsPos = unpackOp.getInnerDimsPos();
SmallVector<int64_t> perm =
getPackUnpackNormalizedInnerPerm(srcRank, innerDimsPos);
SmallVector<int64_t> transpShape(readShape);
applyPermutationToVector<int64_t>(transpShape, perm);

Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
auto transposedOp =
rewriter.create<linalg::TransposeOp>(loc, innerTile, empty, perm);

// 3. Handle in-complete tiles if needed. It truncates trailing data from the
// transposed tile.
int numLoops = transpShape.size();
SmallVector<OpFoldResult> tileStrides(numLoops, oneIdxAttr);
SmallVector<OpFoldResult> tileOffsets(numLoops, zeroIdxAttr);
SmallVector<OpFoldResult> tileSizes;
for (int dim : innerDimsPos)
tileSizes.push_back(getAsOpFoldResult(
rewriter.createOrFold<tensor::DimOp>(loc, unpackOp.getDest(), dim)));

applyPermutationToVector<OpFoldResult>(tileSizes, perm);
auto partialTile = rewriter.create<tensor::ExtractSliceOp>(
loc, transposedOp.getResult()[0], tileOffsets, tileSizes, tileStrides);

// 4. Insert the result to the destination tensor.
SmallVector<OpFoldResult> writeSizes;
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
unpackOp.getDimAndTileMapping();
for (int i = 0, idx = 0; i < destRank; ++i) {
if (dimAndTileMapping.count(i))
writeSizes.push_back(tileSizes[idx++]);
else
writeSizes.push_back(oneIdxAttr);
}
auto insert = rewriter.create<tensor::InsertSliceOp>(
loc, partialTile, unpackOp.getDest(), writeOffsets, writeSizes,
writeStrides);
rewriter.replaceOp(unpackOp, insert.getResult());

return success();
}

// The following are patterns for downscaling convolution ops with size-1
// window dimensions.
//
Expand Down
168 changes: 168 additions & 0 deletions mlir/test/Dialect/Linalg/generalize-tensor-unpack.mlir
@@ -0,0 +1,168 @@
// RUN: mlir-opt -split-input-file --test-linalg-transform-patterns="test-generalize-tensor-unpack" %s | FileCheck %s

func.func @simple_KCRSsr_to_KCRS(%arg0: tensor<1x1x1x1x8x32xf32>, %arg1: tensor<1x1x32x8xf32>) -> tensor<1x1x32x8xf32> {
%0 = tensor.unpack %arg0 inner_dims_pos = [3, 2] inner_tiles = [8, 32] into %arg1 : tensor<1x1x1x1x8x32xf32> -> tensor<1x1x32x8xf32>
return %0 : tensor<1x1x32x8xf32>
}
// CHECK-LABEL: func.func @simple_KCRSsr_to_KCRS
// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[TILE:.+]] = tensor.extract_slice %[[SRC]][0, 0, 0, 0, 0, 0] [1, 1, 1, 1, 8, 32] [1, 1, 1, 1, 1, 1]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<32x8xf32>
// CHECK: %[[TRANSP:.+]] = linalg.transpose
// CHECK-SAME: ins(%[[TILE]] : tensor<8x32xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<32x8xf32>)
// CHECK-SAME: permutation = [1, 0]
// CHECK: %[[INSERT:.+]] = tensor.insert_slice %[[TRANSP]] into %[[DEST]]
// CHECK-SAME: [0, 0, 0, 0] [1, 1, 32, 8] [1, 1, 1, 1]
// CHECK: return %[[INSERT]]

// -----

func.func @simple_unpack_and_extract_slice(%input: tensor<1x1x8x2xf32>, %output: tensor<5x1xf32>) -> tensor<5x1xf32> {
%0 = tensor.unpack %input inner_dims_pos = [0, 1] inner_tiles = [8, 2] into %output : tensor<1x1x8x2xf32> -> tensor<5x1xf32>
return %0 : tensor<5x1xf32>
}
// CHECK-LABEL: func.func @simple_unpack_and_extract_slice
// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[TILE:.+]] = tensor.extract_slice %[[SRC]][0, 0, 0, 0] [1, 1, 8, 2] [1, 1, 1, 1]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<8x2xf32>
// CHECK: %[[TRANSP:.+]] = linalg.transpose
// CHECK-SAME: ins(%[[TILE]] : tensor<8x2xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<8x2xf32>)
// CHECK-SAME: permutation = [0, 1]
// They have the same type, so the insert_slice op is folded
// away.
// CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[TRANSP]][0, 0] [5, 1] [1, 1]
// CHECK: return %[[SLICE]]

// -----

func.func @simple_CNnc_to_NC(%arg0: tensor<1x1x32x8xf32>, %arg1: tensor<32x8xf32>) -> tensor<32x8xf32>{
%0 = tensor.unpack %arg0 outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 8] into %arg1 : tensor<1x1x32x8xf32> -> tensor<32x8xf32>
return %0 : tensor<32x8xf32>
}
// CHECK-LABEL: func.func @simple_CNnc_to_NC
// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK: %[[TILE:.+]] = tensor.extract_slice %[[SRC]][0, 0, 0, 0] [1, 1, 32, 8] [1, 1, 1, 1]
// CHECK: %[[EMPTY:.+]] = tensor.empty() : tensor<32x8xf32>
// CHECK: %[[TRANSP:.+]] = linalg.transpose
// CHECK-SAME: ins(%[[TILE]] : tensor<32x8xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<32x8xf32>)
// CHECK-SAME: permutation = [0, 1]
// They have the same type, so the insert_slice op is folded
// away.
// CHECK: return %[[TRANSP]]

// -----

// RUN: mlir-opt -split-input-file --test-transform-dialect-interpreter --canonicalize --test-linalg-transform-patterns="test-generalize-tensor-unpack" %s | FileCheck %s --check-prefix=CHECK-TRANS

func.func @KCRSsr_to_KCRS(%arg0: tensor<1x1x4x8x8x32xf32>, %arg1: tensor<1x1x128x64xf32>) -> tensor<1x1x128x64xf32> {
%0 = tensor.unpack %arg0 inner_dims_pos = [3, 2] inner_tiles = [8, 32] into %arg1 : tensor<1x1x4x8x8x32xf32> -> tensor<1x1x128x64xf32>
return %0 : tensor<1x1x128x64xf32>
}

transform.sequence failures(propagate) {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["tensor.unpack"]} in %arg1
%1, %loops:4 = transform.structured.tile_to_scf_for %0 [1, 1, 32, 8]
}
// CHECK-TRANS-DAG: #[[MAP0:.+]] = affine_map<(d0) -> (d0 floordiv 32)>
// CHECK-TRANS-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0 floordiv 8)>
// CHECK-TRANS: func.func @KCRSsr_to_KCRS
// CHECK-TRANS-SAME: %[[SRC:[a-zA-Z0-9]+]]
// CHECK-TRANS-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-TRANS: %{{.+}} = scf.for %[[R:[a-zA-Z0-9]+]] =
// CHECK-TRANS: %{{.+}} = scf.for %[[S:[a-zA-Z0-9]+]] =
// CHECK-TRANS: %[[IN_R:.+]] = affine.apply #[[MAP0]](%[[R]])
// CHECK-TRANS: %[[IN_S:.+]] = affine.apply #[[MAP1]](%[[S]])
// CHECK-TRANS: %[[SRC_SLICE:.+]] = tensor.extract_slice %[[SRC]]
// CHECK-TRANS-SAME: [0, 0, %[[IN_R]], %[[IN_S]], 0, 0] [1, 1, 1, 1, 8, 32] [1, 1, 1, 1, 1, 1]
// CHECK-TRANS: %[[TILE:.+]] = tensor.extract_slice %[[SRC_SLICE]]
// CHECK-TRANS-SAME: [0, 0, 0, 0, 0, 0] [1, 1, 1, 1, 8, 32] [1, 1, 1, 1, 1, 1] : tensor<1x1x1x1x8x32xf32> to tensor<8x32xf32>
// CHECK-TRANS: %[[EMPTY:.+]] = tensor.empty() : tensor<32x8xf32>
// CHECK-TRANS: %[[TRANSP:.+]] = linalg.transpose
// CHECK-TRANS-SAME: ins(%[[TILE]]
// CHECK-TRANS-SAME: outs(%[[EMPTY]]
// CHECK-TRANS-SAME: permutation = [1, 0]
// CHECK-TRANS: %{{.+}} = tensor.insert_slice %[[TRANSP]] into %{{.+}}

// -----

func.func @unpack_and_extract_slice(%arg0: tensor<2x8x8x2xf32>, %arg1: tensor<13x15xf32>) -> tensor<13x15xf32> {
%0 = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [8, 2] into %arg1 : tensor<2x8x8x2xf32> -> tensor<13x15xf32>
return %0 : tensor<13x15xf32>
}
// CHECK-TRANS-DAG: #[[MAP0:.+]] = affine_map<(d0) -> (-d0 + 13, 8)>
// CHECK-TRANS-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (-d0 + 15, 2)>
// CHECK-TRANS-DAG: #[[MAP2:.+]] = affine_map<(d0) -> (d0 floordiv 8)>
// CHECK-TRANS-DAG: #[[MAP3:.+]] = affine_map<(d0) -> (d0 floordiv 2)>
// CHECK-TRANS: func.func @unpack_and_extract_slice
// CHECK-TRANS-SAME: %[[SRC:[a-zA-Z0-9]+]]
// CHECK-TRANS-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-TRANS: %{{.+}} = scf.for %[[I:[a-zA-Z0-9]+]] =
// CHECK-TRANS: %[[OUT_I_SZ:.+]] = affine.min #[[MAP0]](%[[I]])
// CHECK-TRANS: %{{.+}} = scf.for %[[J:[a-zA-Z0-9]+]] =
// CHECK-TRANS: %[[OUT_J_SZ:.+]] = affine.min #[[MAP1]](%[[J]])
// CHECK-TRANS: %[[IN_I:.+]] = affine.apply #[[MAP2]](%[[I]])
// CHECK-TRANS: %[[IN_J:.+]] = affine.apply #[[MAP3]](%[[J]])
// CHECK-TRANS: %[[SRC_SLICE:.+]] = tensor.extract_slice %[[SRC]]
// CHECK-TRANS-SAME: [%[[IN_I]], %[[IN_J]], 0, 0] [1, 1, 8, 2] [1, 1, 1, 1]
// CHECK-TRANS: %[[ITER_SLICE:.+]] = tensor.extract_slice %{{[a-zA-Z0-9]+}}
// CHECK-TRANS-SAME: [%[[I]], %[[J]]] [%[[OUT_I_SZ]], %[[OUT_J_SZ]]]
// CHECK-TRANS: %[[TILE:.+]] = tensor.extract_slice %[[SRC_SLICE]]
// CHECK-TRANS-SAME: [0, 0, 0, 0] [1, 1, 8, 2] [1, 1, 1, 1] : tensor<1x1x8x2xf32> to tensor<8x2xf32>
// CHECK-TRANS: %[[EMPTY:.+]] = tensor.empty() : tensor<8x2xf32>
// CHECK-TRANS: %[[TRANSP:.+]] = linalg.transpose
// CHECK-TRANS-SAME: ins(%[[TILE]] : tensor<8x2xf32>)
// CHECK-TRANS-SAME: outs(%[[EMPTY]] : tensor<8x2xf32>)
// CHECK-TRANS-SAME: permutation = [0, 1]
// CHECK-TRANS: %[[UNPACK_TILE:.+]] = tensor.extract_slice %[[TRANSP]]
// CHECK-TRANS-SAME: [0, 0] [%[[OUT_I_SZ]], %[[OUT_J_SZ]]] [1, 1]
// CHECK-TRANS: %[[INSERT1:.+]] = tensor.insert_slice %[[UNPACK_TILE]] into %[[ITER_SLICE]]
// CHECK-TRANS-SAME: [0, 0] [%[[OUT_I_SZ]], %[[OUT_J_SZ]]] [1, 1]
// CHECK-TRANS: %[[INSERT2:.+]] = tensor.insert_slice %[[INSERT1]] into %{{[a-zA-Z0-9]+}}
// CHECK-TRANS-SAME: [%[[I]], %[[J]]] [%[[OUT_I_SZ]], %[[OUT_J_SZ]]] [1, 1]

transform.sequence failures(propagate) {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["tensor.unpack"]} in %arg1
%1, %loops:2 = transform.structured.tile_to_scf_for %0 [8, 2]
}

// -----

func.func @CKkc_to_KC(%arg0: tensor<32x4x32x8xf32>, %arg1: tensor<128x256xf32>) -> tensor<128x256xf32> {
%0 = tensor.unpack %arg0 outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 8] into %arg1 : tensor<32x4x32x8xf32> -> tensor<128x256xf32>
return %0 : tensor<128x256xf32>
}
// CHECK-TRANS-DAG: #[[MAP0:.+]] = affine_map<(d0) -> (d0 floordiv 32)>
// CHECK-TRANS-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0 floordiv 8)>
// CHECK-TRANS: func.func @CKkc_to_KC
// CHECK-TRANS-SAME: %[[SRC:[a-zA-Z0-9]+]]
// CHECK-TRANS-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-TRANS: %{{.+}} = scf.for %[[K:[a-zA-Z0-9]+]] =
// CHECK-TRANS: %{{.+}} = scf.for %[[C:[a-zA-Z0-9]+]] =
// CHECK-TRANS: %[[IN_K:.+]] = affine.apply #[[MAP0]](%[[K]])
// CHECK-TRANS: %[[IN_C:.+]] = affine.apply #[[MAP1]](%[[C]])
// CHECK-TRANS: %[[SRC_SLICE:.+]] = tensor.extract_slice %[[SRC]]
// CHECK-TRANS-SAME: [%[[IN_C]], %[[IN_K]], 0, 0] [1, 1, 32, 8] [1, 1, 1, 1]
// CHECK-TRANS: %[[TILE:.+]] = tensor.extract_slice %[[SRC_SLICE]]
// CHECK-TRANS-SAME: [0, 0, 0, 0] [1, 1, 32, 8] [1, 1, 1, 1] : tensor<1x1x32x8xf32> to tensor<32x8xf32>
// CHECK-TRANS: %[[EMPTY:.+]] = tensor.empty() : tensor<32x8xf32>
// CHECK-TRANS: %[[TRANSP:.+]] = linalg.transpose
// CHECK-TRANS-SAME: ins(%[[TILE]]
// CHECK-TRANS-SAME: outs(%[[EMPTY]]
// CHECK-TRANS-SAME: permutation = [0, 1]
// CHECK-TRANS: %[[INSERT:.+]] = tensor.insert_slice %[[TRANSP]] into %{{[a-zA-Z0-9]+}}
// CHECK-TRANS-SAME: [%[[K]], %[[C]]] [32, 8] [1, 1]


transform.sequence failures(propagate) {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["tensor.unpack"]} in %arg1
%1, %loops:2 = transform.structured.tile_to_scf_for %0 [32, 8]
}
16 changes: 15 additions & 1 deletion mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
Expand Up @@ -81,9 +81,15 @@ struct TestLinalgTransforms
llvm::cl::init(false)};
Option<bool> testGeneralizeTensorPackOp{
*this, "test-generalize-tensor-pack",
llvm::cl::desc("Test transform that generalize pack ops into a sequence "
llvm::cl::desc("Test transform that generalizes pack ops into a sequence "
"of tensor and Linalg ops"),
llvm::cl::init(false)};
Option<bool> testGeneralizeTensorUnPackOp{
*this, "test-generalize-tensor-unpack",
llvm::cl::desc(
"Test transform that generalizes unpack ops into a sequence "
"of tensor and Linalg ops"),
llvm::cl::init(false)};
Option<bool> testSwapSubTensorPadTensor{
*this, "test-swap-subtensor-padtensor",
llvm::cl::desc("Test rewrite of subtensor(tensor.pad) into "
Expand Down Expand Up @@ -176,6 +182,12 @@ static void applyGeneralizeTensorPackPatterns(func::FuncOp funcOp) {
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}

static void applyGeneralizeTensorUnPackPatterns(func::FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
patterns.add<GeneralizeOuterUnitDimsUnPackOpPattern>(funcOp.getContext());
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}

static void applyExtractSliceOfPadTensorSwapPattern(func::FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
patterns.add<ExtractSliceOfPadTensorSwapPattern>(funcOp.getContext());
Expand Down Expand Up @@ -220,6 +232,8 @@ void TestLinalgTransforms::runOnOperation() {
return applyGeneralizePadTensorPatterns(getOperation());
if (testGeneralizeTensorPackOp)
return applyGeneralizeTensorPackPatterns(getOperation());
if (testGeneralizeTensorUnPackOp)
return applyGeneralizeTensorUnPackPatterns(getOperation());
if (testSwapSubTensorPadTensor)
return applyExtractSliceOfPadTensorSwapPattern(getOperation());
if (testBubbleUpExtractSliceOpPattern)
Expand Down

0 comments on commit 3ebc6be

Please sign in to comment.