Skip to content

Commit

Permalink
[flang][hlfir] lower hlfir.product into fir runtime call
Browse files Browse the repository at this point in the history
The shared code for lowering the sum and product operations in
flang/lib/Optimizer/HLFIR/Transforms/LowerHLFIRIntrinsics.cpp have
been moved into a new class HlfirReductionIntrinsicConverion.

Depends on: D148719

Differential Revision: https://reviews.llvm.org/D149644
  • Loading branch information
jacob-crawley committed May 4, 2023
1 parent 508d49a commit 7c57195
Show file tree
Hide file tree
Showing 2 changed files with 206 additions and 16 deletions.
51 changes: 35 additions & 16 deletions flang/lib/Optimizer/HLFIR/Transforms/LowerHLFIRIntrinsics.cpp
Expand Up @@ -163,39 +163,56 @@ class HlfirIntrinsicConversion : public mlir::OpRewritePattern<OP> {
}
};

struct SumOpConversion : public HlfirIntrinsicConversion<hlfir::SumOp> {
using HlfirIntrinsicConversion<hlfir::SumOp>::HlfirIntrinsicConversion;
template <class OP>
class HlfirReductionIntrinsicConversion : public HlfirIntrinsicConversion<OP> {
using HlfirIntrinsicConversion<OP>::HlfirIntrinsicConversion;
using IntrinsicArgument =
typename HlfirIntrinsicConversion<OP>::IntrinsicArgument;

public:
mlir::LogicalResult
matchAndRewrite(hlfir::SumOp sum,
matchAndRewrite(OP operation,
mlir::PatternRewriter &rewriter) const override {
std::string opName;
if constexpr (std::is_same_v<OP, hlfir::SumOp>) {
opName = "sum";
} else if constexpr (std::is_same_v<OP, hlfir::ProductOp>) {
opName = "product";
} else {
return mlir::failure();
}
fir::KindMapping kindMapping{rewriter.getContext()};
fir::FirOpBuilder builder{rewriter, kindMapping};
const mlir::Location &loc = sum->getLoc();
const mlir::Location &loc = operation->getLoc();

mlir::Type i32 = builder.getI32Type();
mlir::Type logicalType = fir::LogicalType::get(
builder.getContext(), builder.getKindMap().defaultLogicalKind());

llvm::SmallVector<IntrinsicArgument, 3> inArgs;
inArgs.push_back({sum.getArray(), sum.getArray().getType()});
inArgs.push_back({sum.getDim(), i32});
inArgs.push_back({sum.getMask(), logicalType});
inArgs.push_back({operation.getArray(), operation.getArray().getType()});
inArgs.push_back({operation.getDim(), i32});
inArgs.push_back({operation.getMask(), logicalType});

auto *argLowering = fir::getIntrinsicArgumentLowering("sum");
auto *argLowering = fir::getIntrinsicArgumentLowering(opName);
llvm::SmallVector<fir::ExtendedValue, 3> args =
lowerArguments(sum, inArgs, rewriter, argLowering);
this->lowerArguments(operation, inArgs, rewriter, argLowering);

mlir::Type scalarResultType = hlfir::getFortranElementType(sum.getType());
mlir::Type scalarResultType =
hlfir::getFortranElementType(operation.getType());

auto [resultExv, mustBeFreed] =
fir::genIntrinsicCall(builder, loc, "sum", scalarResultType, args);
fir::genIntrinsicCall(builder, loc, opName, scalarResultType, args);

processReturnValue(sum, resultExv, mustBeFreed, builder, rewriter);
this->processReturnValue(operation, resultExv, mustBeFreed, builder,
rewriter);
return mlir::success();
}
};

using SumOpConversion = HlfirReductionIntrinsicConversion<hlfir::SumOp>;

using ProductOpConversion = HlfirReductionIntrinsicConversion<hlfir::ProductOp>;

struct MatmulOpConversion : public HlfirIntrinsicConversion<hlfir::MatmulOp> {
using HlfirIntrinsicConversion<hlfir::MatmulOp>::HlfirIntrinsicConversion;

Expand Down Expand Up @@ -304,14 +321,16 @@ class LowerHLFIRIntrinsics
mlir::ModuleOp module = this->getOperation();
mlir::MLIRContext *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.insert<MatmulOpConversion, MatmulTransposeOpConversion,
SumOpConversion, TransposeOpConversion>(context);
patterns
.insert<MatmulOpConversion, MatmulTransposeOpConversion,
SumOpConversion, ProductOpConversion, TransposeOpConversion>(
context);
mlir::ConversionTarget target(*context);
target.addLegalDialect<mlir::BuiltinDialect, mlir::arith::ArithDialect,
mlir::func::FuncDialect, fir::FIROpsDialect,
hlfir::hlfirDialect>();
target.addIllegalOp<hlfir::MatmulOp, hlfir::MatmulTransposeOp, hlfir::SumOp,
hlfir::TransposeOp>();
hlfir::ProductOp, hlfir::TransposeOp>();
target.markUnknownOpDynamicallyLegal(
[](mlir::Operation *) { return true; });
if (mlir::failed(
Expand Down
171 changes: 171 additions & 0 deletions flang/test/HLFIR/product-lowering.fir
@@ -0,0 +1,171 @@
// Test hlfir.product operation lowering to fir runtime call
// RUN: fir-opt %s -lower-hlfir-intrinsics | FileCheck %s

// one argument product
func.func @_QPproduct1(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "a"}, %arg1: !fir.ref<i32> {fir.bindc_name = "s"}) {
%0:2 = hlfir.declare %arg0 {uniq_name = "_QFsum1Ea"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
%1:2 = hlfir.declare %arg1 {uniq_name = "_QFsum1Es"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
%2 = hlfir.product %0#0 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?xi32>>) -> !hlfir.expr<i32>
hlfir.assign %2 to %1#0 : !hlfir.expr<i32>, !fir.ref<i32>
hlfir.destroy %2 : !hlfir.expr<i32>
return
}

// CHECK-LABEL: func.func @_QPproduct1(
// CHECK: %[[ARG0:.*]]: !fir.box<!fir.array<?xi32>>
// CHECK: %[[ARG1:.*]]: !fir.ref<i32>
// CHECK-DAG: %[[ARRAY:.*]]:2 = hlfir.declare %[[ARG0]]
// CHECK-DAG: %[[RES:.*]]:2 = hlfir.declare %[[ARG1]]
// CHECK-DAG: %[[MASK:.*]] = fir.absent !fir.box<i1>
// CHECK-DAG: %[[ARRAY_ARG:.*]] = fir.convert %[[ARRAY]]#1 : (!fir.box<!fir.array<?xi32>>) -> !fir.box<none>
// CHECK-DAG: %[[MASK_ARG:.*]] = fir.convert %[[MASK]] : (!fir.box<i1>) -> !fir.box<none>
// CHECK: %[[RET:.*]] = fir.call @_FortranAProductInteger4(%[[ARRAY_ARG]], %[[LOC_STR:.*]], %[[LOC_N:.*]], %[[INT:.*]], %[[MASK_ARG]]) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
// CHECK-NEXT: hlfir.assign %[[RET]] to %[[RES]]#0 : i32, !fir.ref<i32>
// CHECK-NEXT: return
// CHECK-NEXT: }

// product with DIM argument by-ref
func.func @_QPproduct2(%arg0: !fir.box<!fir.array<?x?xi32>> {fir.bindc_name = "a"}, %arg1: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "s"}, %arg2: !fir.ref<index> {fir.bindc_name = "d"}) {
%0:2 = hlfir.declare %arg0 {uniq_name = "_QFproduct2Ea"} : (!fir.box<!fir.array<?x?xi32>>) -> (!fir.box<!fir.array<?x?xi32>>, !fir.box<!fir.array<?x?xi32>>)
%1:2 = hlfir.declare %arg2 {uniq_name = "_QFproduct2Ed"} : (!fir.ref<index>) -> (!fir.ref<index>, !fir.ref<index>)
%2:2 = hlfir.declare %arg1 {uniq_name = "_QFproduct2Es"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
%3 = fir.load %1#0 : !fir.ref<index>
%4 = hlfir.product %0#0 dim %3 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?x?xi32>>, index) -> !hlfir.expr<?xi32>
hlfir.assign %4 to %2#0 : !hlfir.expr<?xi32>, !fir.box<!fir.array<?xi32>>
hlfir.destroy %4 : !hlfir.expr<?xi32>
return
}

// CHECK-LABEL: func.func @_QPproduct2(
// CHECK: %[[ARG0:.*]]: !fir.box<!fir.array<?x?xi32>>
// CHECK: %[[ARG1:.*]]: !fir.box<!fir.array<?xi32>>
// CHECK: %[[ARG2:.*]]: !fir.ref<index>
// CHECK-DAG: %[[ARRAY:.*]]:2 = hlfir.declare %[[ARG0]]
// CHECK-DAG: %[[DIM_VAR:.*]]:2 = hlfir.declare %[[ARG2]]
// CHECK-DAG: %[[RES:.*]]:2 = hlfir.declare %[[ARG1]]

// CHECK-DAG: %[[RET_BOX:.*]] = fir.alloca !fir.box<!fir.heap<!fir.array<?xi32>>>
// CHECK-DAG: %[[RET_ADDR:.*]] = fir.zero_bits !fir.heap<!fir.array<?xi32>>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[RET_SHAPE:.*]] = fir.shape %[[C0]] : (index) -> !fir.shape<1>
// CHECK-DAG: %[[RET_EMBOX:.*]] = fir.embox %[[RET_ADDR]](%[[RET_SHAPE]])
// CHECK-DAG: fir.store %[[RET_EMBOX]] to %[[RET_BOX]]

// CHECK-DAG: %[[MASK:.*]] = fir.absent !fir.box<i1>
// CHECK-DAG: %[[DIM_IDX:.*]] = fir.load %[[DIM_VAR]]#0 : !fir.ref<index>
// CHECK-DAG: %[[DIM:.*]] = fir.convert %[[DIM_IDX]] : (index) -> i32

// CHECK-DAG: %[[RET_ARG:.*]] = fir.convert %[[RET_BOX]]
// CHECK-DAG: %[[ARRAY_ARG:.*]] = fir.convert %[[ARRAY]]
// CHECK-DAG: %[[MASK_ARG:.*]] = fir.convert %[[MASK]]

// CHECK: %[[NONE:.*]] = fir.call @_FortranAProductDim(%[[RET_ARG]], %[[ARRAY_ARG]], %[[DIM]], %[[LOC_STR:.*]], %[[LOC_N:.*]], %[[MASK_ARG]]) : (!fir.ref<!fir.box<none>>, !fir.box<none>, i32, !fir.ref<i8>, i32, !fir.box<none>) -> none
// CHECK: %[[RET:.*]] = fir.load %[[RET_BOX]]
// CHECK: %[[BOX_DIMS:.*]]:3 = fir.box_dims %[[RET]]
// CHECK-NEXT: %[[ADDR:.*]] = fir.box_addr %[[RET]]
// CHECK-NEXT: %[[SHIFT:.*]] = fir.shape_shift %[[BOX_DIMS]]#0, %[[BOX_DIMS]]#1
// CHECK-NEXT: %[[TMP:.*]]:2 = hlfir.declare %[[ADDR]](%[[SHIFT]]) {uniq_name = ".tmp.intrinsic_result"}
// CHECK: %[[TRUE:.*]] = arith.constant true
// CHECK: %[[EXPR:.*]] = hlfir.as_expr %[[TMP]]#0 move %[[TRUE]] : (!fir.box<!fir.array<?xi32>>, i1) -> !hlfir.expr<?xi32>
// CHECK: hlfir.assign %[[EXPR]] to %[[RES]]#0
// CHECK: hlfir.destroy %[[EXPR]]
// CHECK-NEXT: return
// CHECK-NEXT: }

// product with scalar mask
func.func @_QPproduct3(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "a"}, %arg1: !fir.ref<i32> {fir.bindc_name = "s"}, %arg2: !fir.ref<!fir.logical<4>> {fir.bindc_name = "m"}) {
%0:2 = hlfir.declare %arg0 {uniq_name = "_QFproduct3Ea"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
%1:2 = hlfir.declare %arg2 {uniq_name = "_QFproduct3Em"} : (!fir.ref<!fir.logical<4>>) -> (!fir.ref<!fir.logical<4>>, !fir.ref<!fir.logical<4>>)
%2:2 = hlfir.declare %arg1 {uniq_name = "_QFproduct3Es"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
%3 = hlfir.product %0#0 mask %1#0 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?xi32>>, !fir.ref<!fir.logical<4>>) -> !hlfir.expr<i32>
hlfir.assign %3 to %2#0 : !hlfir.expr<i32>, !fir.ref<i32>
hlfir.destroy %3 : !hlfir.expr<i32>
return
}

// CHECK-LABEL: func.func @_QPproduct3(
// CHECK: %[[ARG0:.*]]: !fir.box<!fir.array<?xi32>>
// CHECK: %[[ARG1:.*]]: !fir.ref<i32>
// CHECK: %[[ARG2:.*]]: !fir.ref<!fir.logical<4>>
// CHECK-DAG: %[[ARRAY:.*]]:2 = hlfir.declare %[[ARG0]]
// CHECK-DAG: %[[RES:.*]]:2 = hlfir.declare %[[ARG1]]
// CHECK-DAG: %[[MASK:.*]]:2 = hlfir.declare %[[ARG2]]
// CHECK-DAG: %[[MASK_BOX:.*]] = fir.embox %[[MASK]]#1 : (!fir.ref<!fir.logical<4>>) -> !fir.box<!fir.logical<4>>
// CHECK-DAG: %[[ARRAY_ARG:.*]] = fir.convert %[[ARRAY]]#1 : (!fir.box<!fir.array<?xi32>>) -> !fir.box<none>
// CHECK-DAG: %[[MASK_ARG:.*]] = fir.convert %[[MASK_BOX]] : (!fir.box<!fir.logical<4>>) -> !fir.box<none>
// CHECK: %[[RET:.*]] = fir.call @_FortranAProductInteger4(%[[ARRAY_ARG]], %[[LOC_STR:.*]], %[[LOC_N:.*]], %[[INT:.*]], %[[MASK_ARG]]) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
// CHECK-NEXT: hlfir.assign %[[RET]] to %[[RES]]#0 : i32, !fir.ref<i32>
// CHECK-NEXT: return
// CHECK-NEXT: }

// product with array mask
func.func @_QPproduct4(%arg0: !fir.box<!fir.array<?xi32>> {fir.bindc_name = "a"}, %arg1: !fir.ref<i32> {fir.bindc_name = "s"}, %arg2: !fir.box<!fir.array<?x!fir.logical<4>>> {fir.bindc_name = "m"}) {
%0:2 = hlfir.declare %arg0 {uniq_name = "_QFproduct4Ea"} : (!fir.box<!fir.array<?xi32>>) -> (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?xi32>>)
%1:2 = hlfir.declare %arg2 {uniq_name = "_QFproduct4Em"} : (!fir.box<!fir.array<?x!fir.logical<4>>>) -> (!fir.box<!fir.array<?x!fir.logical<4>>>, !fir.box<!fir.array<?x!fir.logical<4>>>)
%2:2 = hlfir.declare %arg1 {uniq_name = "_QFproduct4Es"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
%3 = hlfir.product %0#0 mask %1#0 {fastmath = #arith.fastmath<contract>} : (!fir.box<!fir.array<?xi32>>, !fir.box<!fir.array<?x!fir.logical<4>>>) -> !hlfir.expr<i32>
hlfir.assign %3 to %2#0 : !hlfir.expr<i32>, !fir.ref<i32>
hlfir.destroy %3 : !hlfir.expr<i32>
return
}

// CHECK-LABEL: func.func @_QPproduct4(
// CHECK: %[[ARG0:.*]]: !fir.box<!fir.array<?xi32>
// CHECK: %[[ARG1:.*]]: !fir.ref<i32>
// CHECK: %[[ARG2:.*]]: !fir.box<!fir.array<?x!fir.logical<4>>>
// CHECK-DAG: %[[ARRAY]]:2 = hlfir.declare %[[ARG0]]
// CHECK-DAG: %[[RES]]:2 = hlfir.declare %[[ARG1]]
// CHECK-DAG: %[[MASK]]:2 = hlfir.declare %[[ARG2]]
// CHECK-DAG: %[[ARRAY_ARG:.*]] = fir.convert %[[ARRAY]]#1 : (!fir.box<!fir.array<?xi32>>) -> !fir.box<none>
// CHECK-DAG: %[[MASK_ARG:.*]] = fir.convert %[[MASK]]#1 : (!fir.box<!fir.array<?x!fir.logical<4>>>) -> !fir.box<none>
// CHECK: %[[RET:.*]] = fir.call @_FortranAProductInteger4(%[[ARRAY_ARG]], %[[LOC_STR:.*]], %[[LOC_N:.*]], %[[INT:.*]], %[[MASK_ARG]]) : (!fir.box<none>, !fir.ref<i8>, i32, i32, !fir.box<none>) -> i32
// CHECK-NEXT: hlfir.assign %[[RET]] to %[[RES]]#0 : i32, !fir.ref<i32>
// CHECK-NEXT: return
// CHECK-NEXT: }


// product with all 3 arguments
func.func @_QPproduct5(%arg0: !fir.ref<!fir.array<2xi32>> {fir.bindc_name = "s"}) {
%0 = fir.address_of(@_QFproduct5Ea) : !fir.ref<!fir.array<2x2xi32>>
%c2 = arith.constant 2 : index
%c2_0 = arith.constant 2 : index
%1 = fir.shape %c2, %c2_0 : (index, index) -> !fir.shape<2>
%2:2 = hlfir.declare %0(%1) {uniq_name = "_QFproduct5Ea"} : (!fir.ref<!fir.array<2x2xi32>>, !fir.shape<2>) -> (!fir.ref<!fir.array<2x2xi32>>, !fir.ref<!fir.array<2x2xi32>>)
%c2_1 = arith.constant 2 : index
%3 = fir.shape %c2_1 : (index) -> !fir.shape<1>
%4:2 = hlfir.declare %arg0(%3) {uniq_name = "_QFproduct5Es"} : (!fir.ref<!fir.array<2xi32>>, !fir.shape<1>) -> (!fir.ref<!fir.array<2xi32>>, !fir.ref<!fir.array<2xi32>>)
%c1_i32 = arith.constant 1 : i32
%true = arith.constant true
%5 = hlfir.product %2#0 dim %c1_i32 mask %true {fastmath = #arith.fastmath<contract>} : (!fir.ref<!fir.array<2x2xi32>>, i32, i1) -> !hlfir.expr<2xi32>
hlfir.assign %5 to %4#0 : !hlfir.expr<2xi32>, !fir.ref<!fir.array<2xi32>>
hlfir.destroy %5 : !hlfir.expr<2xi32>
return
}

// CHECK-LABEL: func.func @_QPproduct5(
// CHECK: %[[ARG0:.*]]: !fir.ref<!fir.array<2xi32>>
// CHECK-DAG: %[[RET_BOX:.*]] = fir.alloca !fir.box<!fir.heap<!fir.array<?xi32>>>
// CHECK-DAG: %[[RET_ADDR:.*]] = fir.zero_bits !fir.heap<!fir.array<?xi32>>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[RET_SHAPE:.*]] = fir.shape %[[C0]] : (index) -> !fir.shape<1>
// CHECK-DAG: %[[RET_EMBOX:.*]] = fir.embox %[[RET_ADDR]](%[[RET_SHAPE]])
// CHECK-DAG: fir.store %[[RET_EMBOX]] to %[[RET_BOX]]

// CHECK-DAG: %[[RES_VAR:.*]] = hlfir.declare %[[ARG0]](%[[RES_SHAPE:.*]])

// CHECK-DAG: %[[MASK_ALLOC:.*]] = fir.alloca !fir.logical<4>
// CHECK-DAG: %[[TRUE:.*]] = arith.constant true
// CHECK-DAG: %[[MASK_VAL:.*]] = fir.convert %[[TRUE]] : (i1) -> !fir.logical<4>
// CHECK-DAG: fir.store %[[MASK_VAL]] to %[[MASK_ALLOC]] : !fir.ref<!fir.logical<4>>
// CHECK-DAG: %[[MASK_BOX:.*]] = fir.embox %[[MASK_ALLOC]]

// CHECK-DAG: %[[ARRAY_ADDR:.*]] = fir.address_of
// CHECK-DAG: %[[ARRAY_VAR:.*]]:2 = hlfir.declare %[[ARRAY_ADDR]](%[[ARRAY_SHAPE:.*]])
// CHECK-DAG: %[[ARRAY_BOX:.*]] = fir.embox %[[ARRAY_VAR]]#1(%[[ARRAY_SHAPE:.*]])

// CHECK-DAG: %[[DIM:.*]] = arith.constant 1 : i32

// CHECK-DAG: %[[RET_ARG:.*]] = fir.convert %[[RET_BOX]]
// CHECK-DAG: %[[ARRAY_ARG:.*]] = fir.convert %[[ARRAY_BOX]] : (!fir.box<!fir.array<2x2xi32>>) -> !fir.box<none>
// CHECK-DAG: %[[MASK_ARG:.*]] = fir.convert %[[MASK_BOX]] : (!fir.box<!fir.logical<4>>) -> !fir.box<none>
// CHECK: %[[NONE:.*]] = fir.call @_FortranAProductDim(%[[RET_ARG]], %[[ARRAY_ARG]], %[[DIM]], %[[LOC_STR:.*]], %[[LOC_N:.*]], %[[MASK_ARG]]) : (!fir.ref<!fir.box<none>>, !fir.box<none>, i32, !fir.ref<i8>, i32, !fir.box<none>) -> none

0 comments on commit 7c57195

Please sign in to comment.