Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TOSA] FFT2D operator #77005

Merged
merged 2 commits into from Jan 11, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
129 changes: 129 additions & 0 deletions mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
Expand Up @@ -2344,6 +2344,134 @@ struct RFFT2dConverter final : public OpRewritePattern<RFFT2dOp> {
}
};

struct FFT2dConverter final : public OpRewritePattern<FFT2dOp> {
d-smirnov marked this conversation as resolved.
Show resolved Hide resolved
using OpRewritePattern<FFT2dOp>::OpRewritePattern;
d-smirnov marked this conversation as resolved.
Show resolved Hide resolved

LogicalResult matchAndRewrite(FFT2dOp fft2d,
PatternRewriter &rewriter) const override {
if (!llvm::all_of(fft2d->getOperandTypes(),
RFFT2dConverter::isRankedTensor) ||
!llvm::all_of(fft2d->getResultTypes(),
RFFT2dConverter::isRankedTensor)) {
return rewriter.notifyMatchFailure(fft2d, "only supports ranked tensors");
}

auto loc = fft2d.getLoc();
d-smirnov marked this conversation as resolved.
Show resolved Hide resolved
auto input_real = fft2d.getInputReal();
auto input_imag = fft2d.getInputImag();
auto inverse = fft2d.getInverseAttr();
d-smirnov marked this conversation as resolved.
Show resolved Hide resolved

auto real_el_ty = input_real.getType()
.cast<ShapedType>()
.getElementType()
.cast<FloatType>();
auto imag_el_ty = input_imag.getType()
.cast<ShapedType>()
.getElementType()
.cast<FloatType>();
d-smirnov marked this conversation as resolved.
Show resolved Hide resolved

assert(real_el_ty == imag_el_ty);

// Compute the output type and set of dynamic sizes
llvm::SmallVector<Value> dynamicSizes;
d-smirnov marked this conversation as resolved.
Show resolved Hide resolved

// Get [N, H, W]
auto dims = tensor::getMixedSizes(rewriter, loc, input_real);
d-smirnov marked this conversation as resolved.
Show resolved Hide resolved

llvm::SmallVector<int64_t, 3> staticSizes;
dispatchIndexOpFoldResults(dims, dynamicSizes, staticSizes);

auto outputType = RankedTensorType::get(staticSizes, real_el_ty);

// Iterator types for the linalg.generic implementation
llvm::SmallVector<utils::IteratorType, 5> iteratorTypes = {
utils::IteratorType::parallel, utils::IteratorType::parallel,
utils::IteratorType::parallel, utils::IteratorType::reduction,
utils::IteratorType::reduction};

// Inputs/outputs to the linalg.generic implementation
llvm::SmallVector<Value> genericOpInputs = {input_real, input_imag};
llvm::SmallVector<Value> genericOpOutputs = {
RFFT2dConverter::createZeroTensor(rewriter, loc, outputType,
dynamicSizes),
RFFT2dConverter::createZeroTensor(rewriter, loc, outputType,
dynamicSizes)};

// Indexing maps for input and output tensors
auto indexingMaps = AffineMap::inferFromExprList(
llvm::ArrayRef{RFFT2dConverter::affineDimsExpr(rewriter, 0, 3, 4),
RFFT2dConverter::affineDimsExpr(rewriter, 0, 3, 4),
RFFT2dConverter::affineDimsExpr(rewriter, 0, 1, 2),
RFFT2dConverter::affineDimsExpr(rewriter, 0, 1, 2)});

// Width and height dimensions of the original input.
auto dimH = rewriter.createOrFold<tensor::DimOp>(loc, input_real, 1);
auto dimW = rewriter.createOrFold<tensor::DimOp>(loc, input_real, 2);

// Constants and dimension sizes
auto twoPiAttr = rewriter.getFloatAttr(real_el_ty, 6.283185307179586);
auto twoPi = rewriter.create<arith::ConstantOp>(loc, twoPiAttr);
auto constH =
RFFT2dConverter::castIndexToFloat(rewriter, loc, real_el_ty, dimH);
auto constW =
RFFT2dConverter::castIndexToFloat(rewriter, loc, real_el_ty, dimW);

auto buildBody = [&](OpBuilder &builder, Location loc, ValueRange args) {
Value valReal = args[0];
Value valImag = args[1];
Value sumReal = args[2];
Value sumImag = args[3];

// Indices for angle computation
auto oy = RFFT2dConverter::createLinalgIndex(builder, loc, real_el_ty, 1);
auto ox = RFFT2dConverter::createLinalgIndex(builder, loc, real_el_ty, 2);
auto iy = RFFT2dConverter::createLinalgIndex(builder, loc, real_el_ty, 3);
auto ix = RFFT2dConverter::createLinalgIndex(builder, loc, real_el_ty, 4);

// float_t angle = sign_val * 2 * pi() * ((iy * oy) / H + (ix * ox) / W);
auto iyXoy = builder.create<arith::MulFOp>(loc, iy, oy);
auto ixXox = builder.create<arith::MulFOp>(loc, ix, ox);
auto yComponent = builder.create<arith::DivFOp>(loc, iyXoy, constH);
auto xComponent = builder.create<arith::DivFOp>(loc, ixXox, constW);
auto sumXY = builder.create<arith::AddFOp>(loc, yComponent, xComponent);
auto angle = builder.create<arith::MulFOp>(loc, twoPi, sumXY);
if (inverse.getValue()) {
angle = builder.create<arith::MulFOp>(
loc, angle,
rewriter.create<arith::ConstantOp>(
loc, rewriter.getFloatAttr(real_el_ty, -1.0)));
}

// realComponent = val_real * cos(a) + val_imag * sin(a);
// imagComponent = -val_real * sin(a) + val_imag * cos(a);
auto cosAngle = builder.create<math::CosOp>(loc, angle);
auto sinAngle = builder.create<math::SinOp>(loc, angle);

auto rcos = builder.create<arith::MulFOp>(loc, valReal, cosAngle);
auto rsin = builder.create<arith::MulFOp>(loc, valImag, sinAngle);
auto realComponent = builder.create<arith::AddFOp>(loc, rcos, rsin);

auto icos = builder.create<arith::MulFOp>(loc, valImag, cosAngle);
auto isin = builder.create<arith::MulFOp>(loc, valReal, sinAngle);

auto imagComponent = builder.create<arith::SubFOp>(loc, icos, isin);

// outReal = sumReal + realComponent
// outImag = sumImag - imagComponent
auto outReal = builder.create<arith::AddFOp>(loc, sumReal, realComponent);
auto outImag = builder.create<arith::AddFOp>(loc, sumImag, imagComponent);

builder.create<linalg::YieldOp>(loc, ValueRange{outReal, outImag});
};

rewriter.replaceOpWithNewOp<linalg::GenericOp>(
fft2d, fft2d.getResultTypes(), genericOpInputs, genericOpOutputs,
indexingMaps, iteratorTypes, buildBody);

return success();
}
};

} // namespace

void mlir::tosa::populateTosaToLinalgConversionPatterns(
Expand Down Expand Up @@ -2407,6 +2535,7 @@ void mlir::tosa::populateTosaToLinalgConversionPatterns(
RescaleConverter,
ReverseConverter,
RFFT2dConverter,
FFT2dConverter,
TableConverter,
TileConverter>(patterns->getContext());
// clang-format on
Expand Down
134 changes: 134 additions & 0 deletions mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
Expand Up @@ -1739,3 +1739,137 @@ func.func @test_dynamic_rfft2d(%arg0: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>,
%output_real, %output_imag = "tosa.rfft2d"(%arg0) {} : (tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
return %output_real, %output_imag : tensor<?x?x?xf32>, tensor<?x?x?xf32>
}

// -----
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py

// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>

// CHECK-LABEL: func.func @test_static_fft2d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<8x8x8xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
// CHECK: %[[VAL_2:.*]] = tensor.empty() : tensor<8x8x8xf32>
// CHECK: %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_4:.*]] = linalg.fill ins(%[[VAL_3]] : f32) outs(%[[VAL_2]] : tensor<8x8x8xf32>) -> tensor<8x8x8xf32>
// CHECK: %[[VAL_5:.*]] = tensor.empty() : tensor<8x8x8xf32>
// CHECK: %[[VAL_6:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_7:.*]] = linalg.fill ins(%[[VAL_6]] : f32) outs(%[[VAL_5]] : tensor<8x8x8xf32>) -> tensor<8x8x8xf32>
// CHECK: %[[VAL_8:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_9:.*]] = arith.constant 8 : index
// CHECK: %[[VAL_10:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_11:.*]] = arith.constant 8 : index
// CHECK: %[[VAL_12:.*]] = arith.constant 6.28318548 : f32
// CHECK: %[[VAL_13:.*]] = arith.index_castui %[[VAL_9]] : index to i32
// CHECK: %[[VAL_14:.*]] = arith.uitofp %[[VAL_13]] : i32 to f32
// CHECK: %[[VAL_15:.*]] = arith.index_castui %[[VAL_11]] : index to i32
// CHECK: %[[VAL_16:.*]] = arith.uitofp %[[VAL_15]] : i32 to f32
// CHECK: %[[VAL_17:.*]]:2 = linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_1]]], iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%[[VAL_0]], %[[VAL_1]] : tensor<8x8x8xf32>, tensor<8x8x8xf32>) outs(%[[VAL_4]], %[[VAL_7]] : tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
// CHECK: ^bb0(%[[VAL_18:.*]]: f32, %[[VAL_19:.*]]: f32, %[[VAL_20:.*]]: f32, %[[VAL_21:.*]]: f32):
// CHECK: %[[VAL_22:.*]] = linalg.index 1 : index
// CHECK: %[[VAL_23:.*]] = arith.index_castui %[[VAL_22]] : index to i32
// CHECK: %[[VAL_24:.*]] = arith.uitofp %[[VAL_23]] : i32 to f32
// CHECK: %[[VAL_25:.*]] = linalg.index 2 : index
// CHECK: %[[VAL_26:.*]] = arith.index_castui %[[VAL_25]] : index to i32
// CHECK: %[[VAL_27:.*]] = arith.uitofp %[[VAL_26]] : i32 to f32
// CHECK: %[[VAL_28:.*]] = linalg.index 3 : index
// CHECK: %[[VAL_29:.*]] = arith.index_castui %[[VAL_28]] : index to i32
// CHECK: %[[VAL_30:.*]] = arith.uitofp %[[VAL_29]] : i32 to f32
// CHECK: %[[VAL_31:.*]] = linalg.index 4 : index
// CHECK: %[[VAL_32:.*]] = arith.index_castui %[[VAL_31]] : index to i32
// CHECK: %[[VAL_33:.*]] = arith.uitofp %[[VAL_32]] : i32 to f32
// CHECK: %[[VAL_34:.*]] = arith.mulf %[[VAL_30]], %[[VAL_24]] : f32
// CHECK: %[[VAL_35:.*]] = arith.mulf %[[VAL_33]], %[[VAL_27]] : f32
// CHECK: %[[VAL_36:.*]] = arith.divf %[[VAL_34]], %[[VAL_14]] : f32
// CHECK: %[[VAL_37:.*]] = arith.divf %[[VAL_35]], %[[VAL_16]] : f32
// CHECK: %[[VAL_38:.*]] = arith.addf %[[VAL_36]], %[[VAL_37]] : f32
// CHECK: %[[VAL_39:.*]] = arith.mulf %[[VAL_12]], %[[VAL_38]] : f32
// CHECK: %[[VAL_40:.*]] = math.cos %[[VAL_39]] : f32
// CHECK: %[[VAL_41:.*]] = math.sin %[[VAL_39]] : f32
// CHECK: %[[VAL_42:.*]] = arith.mulf %[[VAL_18]], %[[VAL_40]] : f32
// CHECK: %[[VAL_43:.*]] = arith.mulf %[[VAL_19]], %[[VAL_41]] : f32
// CHECK: %[[VAL_44:.*]] = arith.addf %[[VAL_42]], %[[VAL_43]] : f32
// CHECK: %[[VAL_45:.*]] = arith.mulf %[[VAL_19]], %[[VAL_40]] : f32
// CHECK: %[[VAL_46:.*]] = arith.mulf %[[VAL_18]], %[[VAL_41]] : f32
// CHECK: %[[VAL_47:.*]] = arith.subf %[[VAL_45]], %[[VAL_46]] : f32
// CHECK: %[[VAL_48:.*]] = arith.addf %[[VAL_20]], %[[VAL_44]] : f32
// CHECK: %[[VAL_49:.*]] = arith.addf %[[VAL_21]], %[[VAL_47]] : f32
// CHECK: linalg.yield %[[VAL_48]], %[[VAL_49]] : f32, f32
// CHECK: } -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>)
// CHECK: return %[[VAL_50:.*]]#0, %[[VAL_50]]#1 : tensor<8x8x8xf32>, tensor<8x8x8xf32>
// CHECK: }
func.func @test_static_fft2d(%arg0: tensor<8x8x8xf32>, %arg1: tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
%output_real, %output_imag = "tosa.fft2d"(%arg0, %arg1) {inverse=false} : (tensor<8x8x8xf32>, tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>)
return %output_real, %output_imag : tensor<8x8x8xf32>, tensor<8x8x8xf32>
}

// -----
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py

// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
// CHECK: #[[$ATTR_3:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>

// CHECK-LABEL: func.func @test_dynamic_fft2d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?x?xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_6:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_6]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_8:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_5]], %[[VAL_7]]) : tensor<?x?x?xf32>
// CHECK: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_10:.*]] = linalg.fill ins(%[[VAL_9]] : f32) outs(%[[VAL_8]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
// CHECK: %[[VAL_11:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_5]], %[[VAL_7]]) : tensor<?x?x?xf32>
// CHECK: %[[VAL_12:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_13:.*]] = linalg.fill ins(%[[VAL_12]] : f32) outs(%[[VAL_11]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
// CHECK: %[[VAL_14:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_15:.*]] = tensor.dim %[[VAL_0]], %[[VAL_14]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_16:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_17:.*]] = tensor.dim %[[VAL_0]], %[[VAL_16]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_18:.*]] = arith.constant 6.28318548 : f32
// CHECK: %[[VAL_19:.*]] = arith.index_castui %[[VAL_15]] : index to i32
// CHECK: %[[VAL_20:.*]] = arith.uitofp %[[VAL_19]] : i32 to f32
// CHECK: %[[VAL_21:.*]] = arith.index_castui %[[VAL_17]] : index to i32
// CHECK: %[[VAL_22:.*]] = arith.uitofp %[[VAL_21]] : i32 to f32
// CHECK: %[[VAL_23:.*]]:2 = linalg.generic {indexing_maps = [#[[$ATTR_2]], #[[$ATTR_2]], #[[$ATTR_3]], #[[$ATTR_3]]], iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%[[VAL_0]], %[[VAL_1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) outs(%[[VAL_10]], %[[VAL_13]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
// CHECK: ^bb0(%[[VAL_24:.*]]: f32, %[[VAL_25:.*]]: f32, %[[VAL_26:.*]]: f32, %[[VAL_27:.*]]: f32):
// CHECK: %[[VAL_28:.*]] = linalg.index 1 : index
// CHECK: %[[VAL_29:.*]] = arith.index_castui %[[VAL_28]] : index to i32
// CHECK: %[[VAL_30:.*]] = arith.uitofp %[[VAL_29]] : i32 to f32
// CHECK: %[[VAL_31:.*]] = linalg.index 2 : index
// CHECK: %[[VAL_32:.*]] = arith.index_castui %[[VAL_31]] : index to i32
// CHECK: %[[VAL_33:.*]] = arith.uitofp %[[VAL_32]] : i32 to f32
// CHECK: %[[VAL_34:.*]] = linalg.index 3 : index
// CHECK: %[[VAL_35:.*]] = arith.index_castui %[[VAL_34]] : index to i32
// CHECK: %[[VAL_36:.*]] = arith.uitofp %[[VAL_35]] : i32 to f32
// CHECK: %[[VAL_37:.*]] = linalg.index 4 : index
// CHECK: %[[VAL_38:.*]] = arith.index_castui %[[VAL_37]] : index to i32
// CHECK: %[[VAL_39:.*]] = arith.uitofp %[[VAL_38]] : i32 to f32
// CHECK: %[[VAL_40:.*]] = arith.mulf %[[VAL_36]], %[[VAL_30]] : f32
// CHECK: %[[VAL_41:.*]] = arith.mulf %[[VAL_39]], %[[VAL_33]] : f32
// CHECK: %[[VAL_42:.*]] = arith.divf %[[VAL_40]], %[[VAL_20]] : f32
// CHECK: %[[VAL_43:.*]] = arith.divf %[[VAL_41]], %[[VAL_22]] : f32
// CHECK: %[[VAL_44:.*]] = arith.addf %[[VAL_42]], %[[VAL_43]] : f32
// CHECK: %[[VAL_45:.*]] = arith.mulf %[[VAL_18]], %[[VAL_44]] : f32
// CHECK: %[[VAL_46:.*]] = arith.constant -1.000000e+00 : f32
// CHECK: %[[VAL_47:.*]] = arith.mulf %[[VAL_45]], %[[VAL_46]] : f32
// CHECK: %[[VAL_48:.*]] = math.cos %[[VAL_47]] : f32
// CHECK: %[[VAL_49:.*]] = math.sin %[[VAL_47]] : f32
// CHECK: %[[VAL_50:.*]] = arith.mulf %[[VAL_24]], %[[VAL_48]] : f32
// CHECK: %[[VAL_51:.*]] = arith.mulf %[[VAL_25]], %[[VAL_49]] : f32
// CHECK: %[[VAL_52:.*]] = arith.addf %[[VAL_50]], %[[VAL_51]] : f32
// CHECK: %[[VAL_53:.*]] = arith.mulf %[[VAL_25]], %[[VAL_48]] : f32
// CHECK: %[[VAL_54:.*]] = arith.mulf %[[VAL_24]], %[[VAL_49]] : f32
// CHECK: %[[VAL_55:.*]] = arith.subf %[[VAL_53]], %[[VAL_54]] : f32
// CHECK: %[[VAL_56:.*]] = arith.addf %[[VAL_26]], %[[VAL_52]] : f32
// CHECK: %[[VAL_57:.*]] = arith.addf %[[VAL_27]], %[[VAL_55]] : f32
// CHECK: linalg.yield %[[VAL_56]], %[[VAL_57]] : f32, f32
// CHECK: } -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
// CHECK: return %[[VAL_58:.*]]#0, %[[VAL_58]]#1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>
// CHECK: }
func.func @test_dynamic_fft2d(%arg0: tensor<?x?x?xf32>, %arg1: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
%output_real, %output_imag = "tosa.fft2d"(%arg0, %arg1) {inverse = true} : (tensor<?x?x?xf32>, tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
return %output_real, %output_imag : tensor<?x?x?xf32>, tensor<?x?x?xf32>
}