Skip to content

A package that allows to visualize `numpy` array operations in 3D/6D space.

Notifications You must be signed in to change notification settings

loijord/numpyviz

Repository files navigation

This is a program that helps to visualise methods of numpy arrays. It is designed to work in 3 dimensions and can also be extended up to 6 dimensions.

Installation

git + clone https://github.com/loijord/numpyviz
cd numpyviz

Requirements

matplotlib == 3.3.0
numpy == 1.19.1

Usage

Import these packages at the beginning of file:

import numpy as np
import matplotlib.pyplot as plt
from numpyviz import VisualArray

Every instance of VisualArray has an arr attribute which is numpy array. It can be visualised after colors attribute is assigned.

Demo

This example demonstrates a very basic usage of VisualArray initialisation and color assignment

import numpy as np
import matplotlib.pyplot as plt
from numpyviz import VisualArray

fig = plt.figure()
titles = ['demo1', 'demo2']

for i, title in enumerate(titles):
    ax = fig.add_subplot(1, 2, 1 + i, projection='3d')
    ax.set_title(title)
    arr = np.arange(24).reshape((2, 3, 4))
    va = VisualArray(arr, fig=fig, ax=ax)
    cells = va.get_indices()[::5] # make some fun pattern
    va.set_colors(cells.T, color='yellow', basecolor='lightblue')
    ax.dist = 15
    va.vizualize(fixview=True)

plt.show()
# va.get_indices()[::5]:
''' 
[[0 0 0]
 [0 1 1]
 [0 2 2]
 [1 0 3]
 [1 2 0]]'''

Example 1

arr = np.arange(90).reshape((6,3,5))
va = VisualArray(arr)
coords = va.get_indices() #indices of every cell
cells = coords[np.sum(coords, axis=1) % 3 == 0]
va.set_colors(cells.T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True)
plt.show()

Example 2

Alternative way to get indices

arr = np.random.randint(100, size=60).reshape((2,6,5))
coords = np.array(list(np.ndindex(arr.shape)))
cells = coords[np.sum(coords, axis=1) % 3 == 0]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1, projection='3d')
ax.set_title('top')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(cells.T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True)

ax = fig.add_subplot(2, 1, 2, projection='3d')
ax.set_title('bottom')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(cells.T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True)
ax.elev = -30
plt.show()

Example 3

arr = np.arange(64).reshape((1,8,8))
va = VisualArray(arr)
cells = va.get_indices_chequerwise(window=(1,1,1))
va.set_colors(cells.T, color='white', basecolor='grey')
va.vizualize(fixview=True, axis_labels=(None,None,None))
va.ax.dist = 12.5 #zoom out a little
plt.show()

Example 4

import matplotlib.gridspec as gridspec
arr = np.random.randint(99, size=24).reshape((3, 4, 2))
fig = plt.figure(constrained_layout=True)
spec = gridspec.GridSpec(ncols=5, nrows=1, figure=fig)
ax = fig.add_subplot(spec[0], projection='3d')
ax.set_title(f'body of shape={arr.shape}')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(va.get_indices().T, color='lawngreen', basecolor='aqua')
va.mix_colors(va.get_indices_chequerwise((1,1,arr.shape[2])).T, 'black')
va.vizualize(fixview=True, axis_labels=('axis=0','axis=1','axis=2'))

ax = fig.add_subplot(spec[1:], projection='3d')
ax.set_title(f'body of shape={arr.flatten().shape}')
va2 = VisualArray(va.arr.flatten(), fig=fig, ax=ax)
va2.set_colors(va2.get_indices().T, color='lawngreen', basecolor='aqua')
va2.mix_colors(va2.get_indices_chequerwise((1,1,arr.shape[2])).T, 'black')
va2.vizualize(fixview=True, axis_labels=(None,None,'axis=0'))
ax.dist = 8
plt.get_current_fig_manager().window.state('zoomed')
plt.show()

Example 5

arr = np.random.randint(99, size=1260).reshape((10,9,14))
shape = (7,2,3,2,5,3)

fig = plt.figure('dimension')
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.set_title(f'body of shape={arr.shape}')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(va.get_indices().T, color='lawngreen', basecolor='aqua')
va.vizualize(fixview=False, axis_labels=('axis=0','axis=1','axis=2'))

ax = fig.add_subplot(1, 2, 2, projection='3d')
ax.set_title(f'body of shape={shape}')
va2 = VisualArray(va.arr, va.colors, fig=fig, ax=ax)
va2.permute(shape)
va2.vizualize(fixview=True, axis_labels=('axis=0','axis=1','axis=2'))
plt.get_current_fig_manager().window.state('zoomed')
ax.azim, ax.elev = -115, 24
plt.show()

Example 6 (NEW!)

# After some break, improve visual view of axis labels and upload demo for this problem:
# https://stackoverflow.com/questions/70444407/why-is-4d-realisation-of-max-pooling-in-numpy-misleading

import numpy as np
import matplotlib.pyplot as plt
from numpyviz import VisualArray

arr = np.random.randint(99, size=(1,8,12))
w = (2, 4)

print(arr.reshape(4, 2, 3, 4))
print('-'*50)
print(arr.reshape(4, 2, 3, 4).max(axis=1))
print('-'*50)
print(arr.reshape(4, 2, 3, 4).max(axis=3))
print('-'*50)
print(arr.reshape(4, 2, 3, 4).max(axis=(1,3)))


fig = plt.figure()
ax = fig.add_subplot(1, 3, 1, projection='3d')
ax.set_title('arr')
va = VisualArray(arr, fig=fig, ax=ax) #indices of every cell
cells = va.get_indices_chequerwise(window=(1,)+w)
va.set_colors(cells.T, color='lawngreen', basecolor='aqua')
va.vizualize(fixview=True, axis_labels=(None, 'axis=0', 'axis=1'))

ax = fig.add_subplot(1, 3, 2, projection='3d')
va2 = VisualArray(va.arr, va.colors, fig=fig, ax=ax) #shape: (1, 8, 12)
shape = (va2.arr.shape[1]//w[0], w[0], va2.arr.shape[2]//w[1], w[1])
ax.set_title(f'arr.reshape{shape}')
va2.reshape(shape) #shape: (4, 2, 3, 4)
va2.permute(shape)
va2.vizualize(fixview=True, axis_labels=('axis=0,3','axis=1','axis=2'))

def argmin(arr):
    #bug...
    a3 = arr.argmin(axis=(1, 3))
    a1, a2 = np.indices((arr.shape[0], arr.shape[2]))
    x, y, z = zip(*np.broadcast(a1, a2, a3))
    return x, y, z

ax = fig.add_subplot(1, 3, 3, projection='3d')
arr3 = arr.reshape(shape).max(axis=(1, 3))[:,:,None]
va3 = VisualArray(arr3, fig=fig, ax=ax) #indices of every cell

cells = va3.get_indices_chequerwise(window=(1,1,1))
va3.set_colors(cells.T, color='lawngreen', basecolor='aqua')
dark_cells = va3.get_indices_chequerwise(window=(1,3,1))
va3.mix_colors(dark_cells.T, 'black', r=0.4)

va3.ax.set_title(f'arr.reshape{shape}.max(axis=(0,2))')
va3.ax.dist = 15
va3.vizualize(fixview=True, axis_labels=('axis=3', 'axis=1', None))

print(f'arr = np.random.randint(99, size=(1,8,12)) =')
print(arr)
print('-'*50)
print(f'arr.reshape{shape}.max(axis=(0, 2)) =')
print(arr.reshape(shape).max(axis=(0, 2)))
print('-'*50)
print(f'arr.reshape{shape}.max(axis=(1, 3)) =')
print(arr.reshape(shape).max(axis=(1, 3)))
plt.show()

Example 7

def argmin_axis0(arr):
    a1 = np.argmin(arr, axis=0)
    a2, a3 = np.indices((arr.shape[1], arr.shape[2]))
    x, y, z = zip(*np.broadcast(a1, a2, a3))
    return x,y,z

def argmin_axis1(arr):
    a2 = np.argmin(arr, axis=1)
    a1, a3 = np.indices((arr.shape[0], arr.shape[2]))
    x, y, z = zip(*np.broadcast(a1, a2, a3))
    return x, y, z

def argmin_axis2(arr):
    a3 = np.argmin(arr, axis=2)
    a1, a2 = np.indices((arr.shape[0], arr.shape[1]))
    x, y, z = zip(*np.broadcast(a1, a2, a3))
    return x, y, z

fig = plt.figure()
arr = np.random.randint(100, size=60).reshape((2,6,5))
titles = ['np.argmin(arr, axis=0)', 'np.argmin(arr, axis=1)', 'np.argmin(arr, axis=2)']
result_titles = ['result along axis=0', 'result along axis=1', 'result along axis=2']
cells = [argmin_axis0(arr), argmin_axis1(arr), argmin_axis2(arr)]
cell_results = [np.argmin(arr, axis=0)[None,:,:], np.argmin(arr, axis=1)[:,None,:], np.argmin(arr, axis=2)[:,:,None]]
axis_names = [(None, 'axis=0', 'axis=1'), ('axis=0', None, 'axis=1'), ('axis=0', 'axis=1', None)]

for i in range(3):
    ax = fig.add_subplot(2, 3, 1 + i, projection='3d')
    ax.set_title(titles[i])
    va = VisualArray(arr, fig=fig, ax=ax)
    va.set_colors(cells[i], color='yellow', basecolor='lightblue')
    va.vizualize(fixview=True)

for i in range(3):
    ax = fig.add_subplot(2, 3, 4 + i, projection='3d')
    ax.set_title(result_titles[i])
    va = VisualArray(cell_results[i], fig=fig, ax=ax)
    va.set_colors(basecolor='lightgreen')
    va.vizualize(fixview=True, axis_labels=axis_names[i])

plt.show()

Example 8

arr = np.array([[r'$\times$', r'$x^2$', r'$y^2$', r'$z^2$', r'$-xy$', r'$-yz$', r'$-xz$'],
                [r'$x$', r'$x^3$', r'$xy^2$', r'$xz^2$', r'$-x^2y$', r'$-xyz$', r'$-x^2z$'],
                [r'$y$', r'$x^2y$', r'$y^3$', r'$yz^2$', r'$-xy^2$', r'$-y^2z$', r'$-xyz$'],
                [r'$z$', r'$x^2z$', r'$y^2z$', r'$z^3$', r'$-xyz$', r'$-yz^2$', r'$-xz^2$']])
va = VisualArray(arr)
blue = [(0,i,0) for i in range(1,4)] + [(0,0,i) for i in range(1,7)]
lime = [(0,1,1), (0,2,2), (0,3,3), (0,1,-2), (0,2,-1), (0,3,-3)]
va.set_colors(zip(*blue), color='lightblue', basecolor='white')
va.set_colors(zip(*lime), color='lime')
va.set_colors(zip(*[(0,2,-2), (0,-1,2)]), color='#ffff00')
va.set_colors(zip(*[(0,1,2), (0,2,4)]), color='#dddd00')
va.set_colors(zip(*[(0,1,3), (0,-1,-1)]), color='#bbbb00')
va.set_colors(zip(*[(0,1,4), (0,2,1)]), color='#999900')
va.set_colors(zip(*[(0,1,6), (0,-1,1)]), color='#777700')
va.set_colors(zip(*[(0,2,3), (0,-1,-2)]), color='#555500')
va.vizualize(fixview=True,
             axis_labels = [None, '$x+y+z$', r'$' + r'\!'*35 + r' x^2+y^2+z^2-xy-yz-zx$'],
             scale=0.4)
va.ax.set_title('Why $(x+y+z)(x^2+y^2+z^2-xy-yz-zx) = x^3+y^3+z^3-3xyz$? \n Simplify monochromatic pairs of yellow cubes!')
va.ax.azim, va.ax.elev = -108, 54
plt.show()

Example 9a

"""this is an example that demonstrates how to multiply five polynomials"""
arr = np.array([[[r'$x^2y$', r'$xy^2$'],[r'$xy^2$', r'$y^3$']],
                [[r'$x^3$', r'$x^2y$'],[r'$x^2y$', r'$xy^2$']]])
va = VisualArray(arr)
va.set_colors(zip(*[(0,1,1)]), color='#6666ff')
va.set_colors(zip(*[(1,0,0)]), color='#ff66ff')
va.set_colors(zip(*[(0,0,0),(1,1,0),(1,0,1)]), color='#66ff66')
va.set_colors(zip(*[(0,1,0),(0,0,1),(1,1,1)]), color='#66ffff')
va.vizualize(fixview=False,
             axis_labels = ['$x+y$', '$x+y$', '$x+y$'],
             scale=0.7)
va.ax.set_title('Why $(x+y)^3 = x^3+3x^2y+3xy^2+y^3$?')
plt.show()

Example 9b

"""this is an example that demonstrates how to multiply five polynomials"""
fig = plt.figure()
arr = np.array([[[r'$x^3y^2$', r'$x^2y^3$'],[r'$x^2y^3$', r'$xy^4$']],
                [[r'$x^2y^3$', r'$xy^4$'],[r'$xy^4$', r'$y^5$']],
                [[r'$x^4y$', r'$x^3y^2$'],[r'$x^3y^2$', r'$x^2y^3$']],
                [[r'$x^3y^2$', r'$x^2y^3$'],[r'$x^2y^3$', r'$xy^4$']],
                [[r'$x^4y$', r'$x^3y^2$'], [r'$x^3y^2$', r'$x^2y^3$']],
                [[r'$x^3y^2$', r'$x^2y^3$'], [r'$x^2y^3$', r'$xy^4$']],
                [[r'$x^5$', r'$x^4y$'], [r'$x^4y$', r'$x^3y^2$']],
                [[r'$x^4y$', r'$x^3y^2$'], [r'$x^3y^2$', r'$x^2y^3$']]])

ax = fig.add_subplot(1, 2, 1, projection='3d')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(np.where(arr=='$x^5$'), color='#6666ff')
va.set_colors(np.where(arr=='$x^4y$'), color='#66ff66')
va.set_colors(np.where(arr=='$x^3y^2$'), color='#ff6666')
va.set_colors(np.where(arr=='$x^2y^3$'), color='#ffff66')
va.set_colors(np.where(arr=='$xy^4$'), color='#ff66ff')
va.set_colors(np.where(arr=='$y^5$'), color='#66ffff')
va.permute(shape=(2,2,2,2,2))
va.vizualize(fixview=True,
             axis_labels = [r'$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!'+'x(x+y)\!\!+\!\!y(x+y)$',
                            r'$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!'+'x(x+y)\!\!+\!\!y(x+y)$',
                            r'$\!\!x+y$'],
             scale=0.6)
va.ax.set_title(r'Why $(x+y)^5 = x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5$?' +'\n' +
                r'Multiply each $2\times 2 \times 2$ subcube by $x^2$, $xy$, $xy$, $y^2$' +
                '\n' + r'Then reduce monochromatic terms')
va.ax.dist = 11.5

ax = fig.add_subplot(1, 2, 2, projection='3d')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(np.where(arr=='$x^5$'), color='#6666ff')
va.set_colors(np.where(arr=='$x^4y$'), color='#66ff66')
va.set_colors(np.where(arr=='$x^3y^2$'), color='#ff6666')
va.set_colors(np.where(arr=='$x^2y^3$'), color='#ffff66')
va.set_colors(np.where(arr=='$xy^4$'), color='#ff66ff')
va.set_colors(np.where(arr=='$y^5$'), color='#66ffff')
va.permute(shape=(2,2,2,2,2))
va.vizualize(fixview=True,
             axis_labels = [r'$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!'+'x(x+y)\!\!+\!\!y(x+y)$',
                            r'$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!'+'x(x+y)\!\!+\!\!y(x+y)$',
                            r'$\!\!x+y$'],
             scale=0.6)
va.ax.set_title(r'BACKSIDE CAMERA')

va.ax.azim, va.ax.elev, va.ax.dist = -55, 35, 11.5
plt.get_current_fig_manager().window.state('zoomed')
plt.show()

Example 10a

Warning: this might be quite slow to render visual array of shape (32, 32, 3)

def tohex(arr):
    #shape of array: (X,Y,3)
    #this is a vectorized version of arr of rgb -> arr of hex color codes
    def tohexarr(x):
        form = list('#000000')
        c = np.base_repr(x, base=16)
        form[-len(c):] = list(c)
        return ''.join(form)
    arr = np.asarray(arr, dtype='uint32')
    hexarr = np.vectorize(tohexarr)
    return hexarr((arr[:, :, 0]<<16) + (arr[:, :, 1]<<8) + arr[:, :, 2])\

from PIL import Image
test_image = Image.open('cat.jpg')
test_image = test_image.resize((32,32), Image.ANTIALIAS)
test_image = np.array(test_image).astype(int)

va = VisualArray(test_image)
coords = va.get_indices()
eye = np.eye(3, dtype=int)

# input of set_colors can be another array of len(cellsT)
for i in range(3):
    color = np.expand_dims(test_image[:,:,i], axis=2) * eye[i]
    cellsT = coords[coords[:, 2] == i].T #list of coords where z = i
    va.set_colors(cellsT, color=tohex(color)[cellsT[0], cellsT[1]])
va.vizualize(fixview=True, scale=0.7, axis_labels=(None,None,None))
va.ax.azim = -140 #change to 40 to see another back side
va.ax.elev = 20
va.ax.dist = 8 #zoom in a little
plt.get_current_fig_manager().window.state('zoomed')
plt.show()

Example 10b

Warning: this might be quite slow to render visual array of shape (32, 32, 1). If you need to convert single color code to rgb, use:

(np.array(matplotlib.colors.to_rgb('#EFF1DE'))*255).astype(int)

def tohex(arr):
    def tohexarr(x):
        form = list('#000000')
        c = np.base_repr(x, base=16)
        form[-len(c):] = list(c)
        return ''.join(form)
    arr = np.asarray(arr, dtype='uint32')
    hexarr = np.vectorize(tohexarr)
    return hexarr((arr[:, :, 0]<<16) + (arr[:, :, 1]<<8) + arr[:, :, 2])

def tolabels(arr):
    def tolabelarr(x):
        return r'\begin{array}{l}\,\,\sharp ' + x[1:4] + r'\\ \,\,\,\, ' + x[4:7] + r'\\ ' + r'\\ ' + r'\\ ' + r'\end{array}'
    labelarr = np.vectorize(tolabelarr)
    return labelarr(arr)

from PIL import Image
test_image = Image.open('cat.jpg')
test_image = test_image.resize((32, 32), Image.ANTIALIAS)
test_image = np.array(test_image).astype(int)
arr = tohex(test_image)

va = VisualArray(arr)
cells = va.get_indices()
x,y,z = cells.T
va.set_colors(cells.T, color=va.arr[x,y,z])
va.arr = tolabels(va.arr)
va.vizualize(fixview=True, scale=0.35, axis_labels=(None,None,None))
va.ax.dist = 11.5 #zoom out a little; change to 3.5 for higher zoom
plt.get_current_fig_manager().window.state('zoomed')
plt.show()

Sputniks

I've used to call it Sputnik1 because it helped to visualise a first quite hard problem on StackOverflow

import numpy as np
import matplotlib.pyplot as plt
from numpyviz import VisualArray

v = np.array([[2,5,  3,5,  1,8],
              [4,6,  2,7,  5,9],
              [1,8,  2,3,  1,4],
              [2,8,  1,4,  3,5],
              [5,7,  2,3,  7,8],
              [1,2,  4,6,  3,5],
              [3,5,  2,8,  1,4]])

s = np.sort(v, axis=1)
arr1 = v[(s[:,:-1] != s[:,1:]).all(1)]
arr2 = arr1.reshape(-1, 3, 2)

fig = plt.figure()
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.set_title('Initial array')
va = VisualArray(arr1, fig=fig, ax=ax)
va.set_colors(va.get_indices().T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True, axis_labels=(None, 'axis=0', 'axis=1'))
ax.dist = 12

ax = fig.add_subplot(1, 2, 2, projection='3d')
ax.set_title('Reshaped array')
va = VisualArray(arr2, fig=fig, ax=ax)
va.set_colors(va.get_indices().T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True)
ax.dist = 12
plt.show()

All the illustrations of Sputniks have its home at sputnik_gallery.

As well as their scripts sputnik_scripts.

About

A package that allows to visualize `numpy` array operations in 3D/6D space.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages