Skip to content

The Pytorch implementation of the 3D Anisotropic Hybrid Network described in the paper "3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes"

master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

README.md

3D Anisotropic Hybrid Network (AH-Net) Pytorch Implementation

The Pytorch implementation of the 3D Anisotropic Hybrid Network (AH-Net) that transfers convolutional features learned from 2D images to 3D anisotropic volumes. Such a transfer inherits the desired strong generalization capability for within-slice information while naturally exploiting between-slice information for more effective modelling. We experiment with the proposed 3D AH-Net on two different medical image analysis tasks, namely lesion detection from a Digital Breast Tomosynthesis volume, and liver and liver tumor segmentation from a Computed Tomography volume and obtain the state-of-the-art results.

For more details, please refer to the paper: Siqi Liu, Daguang Xu, S. Kevin Zhou, Thomas Mertelmeier, Julia Wicklein, Anna Jerebko, Sasa Grbic, Olivier Pauly, Weidong Cai, Dorin Comaniciu 3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes arXiv:1711.08580 [cs.CV]. A shorter version was presented in MICCAI18: https://link.springer.com/chapter/10.1007/978-3-030-00934-2_94

We only host the example network implementations here for brevity. To train a model for 3D medical images:

  1. Pretrain the 2D model from net2d.FCN or net2d.MCFCN. This 2D FCN model is initialised with the Pytorch officially released ResNet50.
  2. Copy the trained 2D model to the 3D AH-Net as
net = AHNet(num_classes=2)
net.copy_from(model2d)
  1. Train the AH-Net model as a 3D fully convolutional network

Note: The impelementation of the 2D network here is adapted from: https://github.com/ycszen/pytorch-segmentation/blob/master/gcn.py

About

The Pytorch implementation of the 3D Anisotropic Hybrid Network described in the paper "3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes"

Resources

Releases

No releases published

Packages

No packages published

Languages