Skip to content

Commit

Permalink
Merge pull request #47 from lsst/tickets/DM-3549
Browse files Browse the repository at this point in the history
meas_astrom/DM-3549: new SIP fitter
  • Loading branch information
TallJimbo committed Oct 26, 2016
2 parents f2a177e + 9286798 commit b143333
Show file tree
Hide file tree
Showing 16 changed files with 3,124 additions and 3 deletions.
4 changes: 3 additions & 1 deletion include/lsst/meas/astrom.h
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,7 @@
#define LSST_MEAS_ASTROM_H

#include "lsst/meas/astrom/matchOptimisticB.h"

#include "lsst/meas/astrom/PolynomialTransform.h"
#include "lsst/meas/astrom/SipTransform.h"
#include "lsst/meas/astrom/ScaledPolynomialTransformFitter.h"
#endif
257 changes: 257 additions & 0 deletions include/lsst/meas/astrom/PolynomialTransform.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,257 @@
// -*- LSST-C++ -*-

/*
* LSST Data Management System
* Copyright 2016 LSST/AURA
*
* This product includes software developed by the
* LSST Project (http://www.lsst.org/).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the LSST License Statement and
* the GNU General Public License along with this program. If not,
* see <http://www.lsstcorp.org/LegalNotices/>.
*/
#ifndef LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
#define LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED

#include "ndarray/eigen.h"
#include "lsst/afw/geom/AffineTransform.h"

namespace lsst { namespace meas { namespace astrom {

class SipForwardTransform;
class SipReverseTransform;
class ScaledPolynomialTransform;

/**
* A 2-d coordinate transform represented by a pair of standard polynomials
* (one for each coordinate).
*
* PolynomialTransform instances should be confined to a single thread.
*/
class PolynomialTransform {
public:

/**
* Convert a ScaledPolynomialTransform to an equivalent PolynomialTransform.
*/
static PolynomialTransform convert(ScaledPolynomialTransform const & other);

/**
* Convert a SipForwardTransform to an equivalent PolynomialTransform.
*/
static PolynomialTransform convert(SipForwardTransform const & other);

/**
* Convert a SipReverseTransform to an equivalent PolynomialTransform.
*/
static PolynomialTransform convert(SipReverseTransform const & other);

/**
* Construct a new transform from existing coefficient arrays.
*
* For both input arguments, the array element at [p, q] corresponds
* to the polynomial term x^p y^q.
*
* Both arrays are expected be square and triangular; if N is the
* order of the transform, both arrays should be (N+1)x(N+1), and
* elements with p + q > N should be zero.
*/
PolynomialTransform(
ndarray::Array<double const,2,2> const & xCoeffs,
ndarray::Array<double const,2,2> const & yCoeffs
);

/**
* Copy constructor.
*
* Coefficient arrays are deep-copied.
*/
PolynomialTransform(PolynomialTransform const & other);

/**
* Move constructor.
*
* Coefficient arrays are moved.
*/
PolynomialTransform(PolynomialTransform && other);

/**
* Copy assignment.
*
* Coefficient arrays are deep-copied.
*/
PolynomialTransform & operator=(PolynomialTransform const & other);

/**
* Move constructor.
*
* Coefficient arrays are moved.
*/
PolynomialTransform & operator=(PolynomialTransform && other);

/// Lightweight swap.
void swap(PolynomialTransform & other);

/// Return the order of the polynomials.
int getOrder() const { return _xCoeffs.rows() - 1; }

/**
* 2-D polynomial coefficients that compute the output x coordinate.
*
* Indexing the result by [p][q] gives the coefficient of
* @f$x_{\mathrm{in}}^p\,y_{\mathrm{in}}^q@f$.
*/
ndarray::Array<double const,2,2> getXCoeffs() const { return _xCoeffs.shallow(); }

/**
* 2-D polynomial coefficients that compute the output x coordinate.
*
* Indexing the result by [p][q] gives the coefficient of
* @f$x_{\mathrm{in}}^p\,y_{\mathrm{in}}^q@f$.
*/
ndarray::Array<double const,2,2> getYCoeffs() const { return _yCoeffs.shallow(); }

/**
* Return an approximate affine transform at the given point.
*/
afw::geom::AffineTransform linearize(afw::geom::Point2D const & in) const;

/**
* Apply the transform to a point.
*/
afw::geom::Point2D operator()(afw::geom::Point2D const & in) const;

private:

PolynomialTransform(int order);

friend PolynomialTransform compose(afw::geom::AffineTransform const & t1, PolynomialTransform const & t2);
friend PolynomialTransform compose(PolynomialTransform const & t1, afw::geom::AffineTransform const & t2);
friend class ScaledPolynomialTransformFitter;
friend class SipForwardTransform;
friend class SipReverseTransform;
friend class ScaledPolynomialTransform;

ndarray::EigenView<double,2,2> _xCoeffs;
ndarray::EigenView<double,2,2> _yCoeffs;
mutable Eigen::VectorXd _u; // workspace for operator() and linearize
mutable Eigen::VectorXd _v;
};

/**
* A 2-d coordinate transform represented by a lazy composition of an AffineTransform,
* a PolynomialTransform, and another AffineTransform.
*
* ScaledPolynomialTransform instances should be confined to a single thread.
*/
class ScaledPolynomialTransform {
public:

/**
* Convert a PolynomialTransform to an equivalent ScaledPolynomialTransform.
*
* This simply inserts identity AffineTransforms before and after applying
* the given PolynomialTransform.
*/
static ScaledPolynomialTransform convert(PolynomialTransform const & poly);

/**
* Convert a SipForwardTransform to an equivalent ScaledPolynomialTransform.
*
* The input transform's CRPIX offset and CD matrix scaling are used to define
* the input and output affine transforms, respectively, leaving the polynomial
* coefficients unmodified.
*/
static ScaledPolynomialTransform convert(SipForwardTransform const & sipForward);

/**
* Convert a SipForwardTransform to an equivalent ScaledPolynomialTransform.
*
* The input transform's CD matrix scaling and CRPIX offset are used to define
* the input and output affine transforms, respectively, leaving the polynomial
* coefficients unmodified.
*/
static ScaledPolynomialTransform convert(SipReverseTransform const & sipReverse);

/**
* Construct a new ScaledPolynomialTransform from its constituents.
*
* @param[in] poly A PolynomialTransform to be applied to points.
* after the inputScaling transform.
* @param[in] inputScaling An AffineTransform to be applied immediately
* to input points.
* @param[in] outputScalingInverse An AffineTransform to be applied to points
* after the PolynomialTransform.
*/
ScaledPolynomialTransform(
PolynomialTransform const & poly,
afw::geom::AffineTransform const & inputScaling,
afw::geom::AffineTransform const & outputScalingInverse
);

ScaledPolynomialTransform(ScaledPolynomialTransform const & other) = default;

ScaledPolynomialTransform(ScaledPolynomialTransform && other) = default;

ScaledPolynomialTransform & operator=(ScaledPolynomialTransform const & other) = default;

ScaledPolynomialTransform & operator=(ScaledPolynomialTransform && other) = default;

void swap(ScaledPolynomialTransform & other);

/// Return the polynomial transform applied after the input scaling.
PolynomialTransform const & getPoly() const { return _poly; }

/// Return the first affine transform applied to input points.
afw::geom::AffineTransform const & getInputScaling() const { return _inputScaling; }

/// Return the affine transform applied to points after the polynomial transform.
afw::geom::AffineTransform const & getOutputScalingInverse() const { return _outputScalingInverse; }

/**
* Return an approximate affine transform at the given point.
*/
afw::geom::AffineTransform linearize(afw::geom::Point2D const & in) const;

/**
* Apply the transform to a point.
*/
afw::geom::Point2D operator()(afw::geom::Point2D const & in) const;

private:
friend class ScaledPolynomialTransformFitter;
PolynomialTransform _poly;
afw::geom::AffineTransform _inputScaling;
afw::geom::AffineTransform _outputScalingInverse;
};

/**
* Return a PolynomialTransform that is equivalent to the composition t1(t2())
*
* The returned composition would be exact in ideal arithmetic, but may suffer from
* significant round-off error for high-order polynomials.
*/
PolynomialTransform compose(afw::geom::AffineTransform const & t1, PolynomialTransform const & t2);

/**
* Return a PolynomialTransform that is equivalent to the composition t1(t2())
*
* The returned composition would be exact in ideal arithmetic, but may suffer from
* significant round-off error for high-order polynomials.
*/
PolynomialTransform compose(PolynomialTransform const & t1, afw::geom::AffineTransform const & t2);

}}} // namespace lsst::meas::astrom

#endif // !LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED

0 comments on commit b143333

Please sign in to comment.