Skip to content
Fast Computation of Running Statistics for Time Series
R
Branch: master
Clone or download
Marta Karas Marta Karas
Marta Karas and Marta Karas add badges to readme
Latest commit cda4d06 Mar 15, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
R Remove example from unexported function Mar 7, 2019
docs
inst/benchmark_results add badges to readme Mar 15, 2019
man add badges to readme Mar 15, 2019
tests
vignettes remove fig.path from vignette to alleviate the error of fig not displ… Mar 3, 2019
.Rbuildignore
.gitignore add badges to readme Mar 15, 2019
.travis.yml adding devel to travis Mar 7, 2019
CRAN-RELEASE build README new prototype Mar 15, 2019
DESCRIPTION
NAMESPACE add dev.off to importFrom Jan 3, 2019
NEWS.md
README.Rmd
README.md add badges to readme Mar 15, 2019
_pkgdown.yml
appveyor.yml Change R releases in travis file. Oct 7, 2018
codecov.yml
cran-comments.md add ORCID to authors, update comments bedfore 2nd CRAN submission Mar 7, 2019
runstats.Rproj

README.md

Travis build status AppVeyor build status Coverage status CRAN status

runstats

Package runstats provides methods for fast computation of running sample statistics for time series. The methods utilize Convolution Theorem to compute convolutions via Fast Fourier Transform (FFT). Implemented running statistics include:

  1. mean,
  2. standard deviation,
  3. variance,
  4. covariance,
  5. correlation,
  6. euclidean distance.

Website

Package website is located here.

Installation

devtools::install_github("martakarass/runstats")

Usage

library(runstats)

## Example: running correlation
x0 <- sin(seq(0, 2 * pi * 5, length.out = 1000))
x  <- x0 + rnorm(1000, sd = 0.1)
pattern <- x0[1:100]
out1 <- RunningCor(x, pattern)
out2 <- RunningCor(x, pattern, circular = TRUE)

## Example: running mean
x <- cumsum(rnorm(1000))
out1 <- RunningMean(x, W = 100)
out2 <- RunningMean(x, W = 100, circular = TRUE)

Running statistics

To better explain the details of running statistics, package’s function runstats.demo(func.name) allows to visualize how the output of each running statistics method is generated. To run the demo, use func.name being one of the methods’ names:

  1. "RunningMean",
  2. "RunningSd",
  3. "RunningVar",
  4. "RunningCov",
  5. "RunningCor",
  6. "RunningL2Norm".
## Example: demo for running correlation method  
runstats.demo("RunningCor")

## Example: demo for running mean method 
runstats.demo("RunningMean")

Performance

We use rbenchmark to measure elapsed time of RunningCov execution, for different lengths of time-series x and fixed length of the shorter pattern y.

library(rbenchmark)

set.seed (20181010)
x.N.seq <- 10^(3:7)
x.list  <- lapply(x.N.seq, function(N) runif(N))
y <- runif(100)

## Benchmark execution time of RunningCov 
out.df <- data.frame()
for (x.tmp in x.list){
  out.df.tmp <- benchmark("runstats" = runstats::RunningCov(x.tmp, y),
                          replications = 10,
                          columns = c("test", "replications", "elapsed",
                                      "relative", "user.self", "sys.self"))
  out.df.tmp$x_length <- length(x.tmp)
  out.df.tmp$pattern_length <- length(y)
  out.df <- rbind(out.df, out.df.tmp)
}
knitr::kable(out.df)
test replications elapsed relative user.self sys.self x_length pattern_length
runstats 10 0.003 1 0.003 0.000 1000 100
runstats 10 0.031 1 0.025 0.006 10000 100
runstats 10 0.385 1 0.328 0.056 100000 100
runstats 10 5.694 1 5.509 0.171 1000000 100
runstats 10 126.393 1 121.007 4.954 10000000 100
Compare with a conventional method

To compare RunStats performance with “conventional” loop-based way of computing running covariance in R, we use rbenchmark package to measure elapsed time of RunStats::RunningCov and running covariance implemented with sapply loop, for different lengths of time-series x and fixed length of the shorter time-series y.

## Conventional approach 
RunningCov.sapply <- function(x, y){
  l_x <- length(x)
  l_y <- length(y)
  sapply(1:(l_x - l_y + 1), function(i){
    cov(x[i:(i+l_y-1)], y)
  })
}

set.seed (20181010)

out.df2 <- data.frame()
for (x.tmp in x.list[c(1,2,3,4)]){
  out.df.tmp <- benchmark("conventional" = RunningCov.sapply(x.tmp, y),
                          "runstats" = runstats::RunningCov(x.tmp, y),
                          replications = 10,
                          columns = c("test", "replications", "elapsed",
                                      "relative", "user.self", "sys.self"))
  out.df.tmp$x_length <- length(x.tmp)
  out.df2 <- rbind(out.df2, out.df.tmp)
}

Benchmark results

library(ggplot2)

plt1 <- 
  ggplot(out.df2, aes(x = x_length, y = elapsed, color = test)) + 
  geom_line() + geom_point(size = 3) + scale_x_log10() + 
  theme_minimal(base_size = 14) + 
  labs(x = "Vector length of x",
       y = "Elapsed [s]", color = "Method", 
       title = "Running covariance rbenchmark") + 
  theme(legend.position = "bottom")
plt2 <- 
  plt1 + 
  scale_y_log10() + 
  labs(y = "Log of elapsed [s]")

cowplot::plot_grid(plt1, plt2, nrow = 1, labels = c('A', 'B'))

Platform information

sessioninfo::platform_info()
#>  setting  value                       
#>  version  R version 3.5.2 (2018-12-20)
#>  os       macOS Mojave 10.14.2        
#>  system   x86_64, darwin15.6.0        
#>  ui       X11                         
#>  language (EN)                        
#>  collate  en_US.UTF-8                 
#>  ctype    en_US.UTF-8                 
#>  tz       America/New_York            
#>  date     2019-03-15
You can’t perform that action at this time.