File tree 4 files changed +36
-6
lines changed
4 files changed +36
-6
lines changed Original file line number Diff line number Diff line change @@ -154,7 +154,7 @@ samples and filter coefficients.
154
154
155
155
### AM demodulation
156
156
157
- Previously I used a Hilbert filter to get the [ analytic signal] , then the
157
+ Previously I used a Hilbert filter to get the [ analytic signal] , because the
158
158
absolute value of the [ analytic signal] is the modulated signal.
159
159
160
160
Then I found a very fast demodulator implemented on [ pietern/apt137] . For each
@@ -163,8 +163,6 @@ carrier frequency:
163
163
164
164
![ AM demodulation formula] ({{ site.baseurl }}/images/demodulation.png)
165
165
166
- Where theta is the AM carrier frequency divided by the sample rate.
167
-
168
166
I couldn't find the theory behind that method, looks similar to I/Q
169
167
demodulation. I was able to reach that final expression (which is used by
170
168
[ pietern/apt137] ) by hand and I wrote the steps on `` extra/demodulation.pdf `` . I
Original file line number Diff line number Diff line change 7
7
\begin {document }
8
8
\pagestyle {empty}
9
9
10
+ Two samples of an AM signal with carrier frequency $ \omega _c$ .
11
+
10
12
\begin {align* }
11
13
\begin {cases }
12
- x[0]=A \sin (\omega t_{0}+\alpha )\\
13
- x[1]=A \sin (\omega t_{1}+\alpha )
14
+ x[0]=f(t_{0}) \sin (\omega _c t_{0}+\alpha )\\
15
+ x[1]=f(t_{1}) \sin (\omega _c t_{1}+\alpha )
14
16
\end {cases }
15
17
\end {align* }
16
18
17
- If $ t_{0}=0 $ , then $ \omega t_{0}=0 $ and $ \omega t_{1}=\alpha $
19
+ If the samples were taken $ \Delta t$ seconds apart, then the sampling frequency
20
+ $ f_s$ is $ 1 /\Delta t$ .
21
+
22
+ \begin {align* }
23
+ \begin {cases }
24
+ x[0]=f(t_{0})\sin (\omega _c t_{0}+\alpha )\\
25
+ x[1]=f(t_{0}+\Delta t)\sin (\omega _c (t_{0}+\Delta t)+\alpha )
26
+ \end {cases }
27
+ \end {align* }
28
+
29
+ If $ \Delta t$ is quite small, $ f(t_0 ) = f(t_0 + \Delta t) = A$ :
30
+
31
+ \begin {align* }
32
+ \begin {cases }
33
+ x[0]=A\sin (\omega _c t_{0}+\alpha )\\
34
+ x[1]=A\sin (\omega _c (t_{0}+\Delta t)+\alpha )
35
+ \end {cases }
36
+ \end {align* }
37
+
38
+ If $ t_0 = 0 $ :
39
+
40
+ \begin {align* }
41
+ \begin {cases }
42
+ x[0]=A\sin (\alpha )\\
43
+ x[1]=A\sin (\omega _c \Delta t+\alpha )
44
+ \end {cases }
45
+ \end {align* }
46
+
47
+ We define $ \phi $ as $ \omega _c \Delta t = \omega _c / f_s = 2 \pi f_c / f_s$ .
18
48
19
49
\begin {align* }
20
50
\begin {cases }
69
99
y[i]=\frac {\sqrt {x[i]^{2}+x[i-1]^{2}-2x[i]x[i-1]\cos\phi }}{\sin\phi }
70
100
\end {align* }
71
101
102
+ Where $ \phi = 2 \pi f_c / f_s$
103
+
72
104
\end {document }
You can’t perform that action at this time.
0 commit comments