Skip to content

mech0ctopus/depth-estimation

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

depth-estimation

Practical Depth Estimation with Image Segmentation and Serial U-Nets

Depth Estimate

Car Depth Estimate

Depth Estimates on KITTI Validation Data

depth-estimation
|   depth_estimation_nunet.py <--- main file
|   depth_estimate.png
|   inference_timer.py
|   kitti.gif
|   prediction_comparison.py
|   README.md
|   requirements.txt
|
+---data_extraction
|       pickle_kitti_dataset.py
|       pickle_nyu_dataset.py
|       save_to_file_nyu.m
|
+---models
|       losses.py
|       models.py
|
\---utils
        augmented_data_generator.py
        deep_utils.py
        fill_depth_colorization.py
        image_utils.py
        images_2_video.py
        rgb2depth.py
        rgb2depth_stream.py
        stack_videos.py

Initial Setup

git clone https://github.com/mech0ctopus/depth-estimation.git
cd depth-estimation
pip install -r requirements.txt

Use Pre-Trained Network on Webcam

  1. Download & extract pre-trained weights from link below. Place in depth-estimation folder.
  2. Run rgb2depth_stream.
cd depth-estimation
python utils\rgb2depth_stream.py

Use Pre-Trained Network on RGB Video

  1. Download & extract pre-trained weights from link below. Place in depth-estimation folder.
  2. Run video_depth_writer.
cd depth-estimation
python utils\video_depth_writer.py

Train Depth Estimation Network

  1. Download NYU Depth V2 or KITTI images from link below
  2. (Optional, for NYU Depth V2) Colorize depth images
python utils\fill_depth_colorization.py
  1. Update training & validation folderpaths
  2. Verify input shapes are correct (NYU: 480x640, Re-sized KITTI: 192x640)
python depth_estimation_nunet.py
  1. View Results in Tensorboard.
cd depth-estimation
tensorboard --logdir logs

Pre-trained Weights

Download Pre-processed KITTI Dataset

Download Pre-processed KITTI RGB and Depth Images (Re-sized and colorized) Training Images (5.5GB)

Note: Raw image data is from the KITTI Raw Dataset (synced and rectified) and the KITTI Depth Prediction Dataset (annotated depth maps).

Datasets

Citation

@conference{vehits20,
author={Kyle J. Cantrell. and Craig D. Miller. and Carlos W. Morato.},
title={Practical Depth Estimation with Image Segmentation and Serial U-Nets},
booktitle={Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,},
year={2020},
pages={406-414},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0009781804060414},
isbn={978-989-758-419-0},
}

About

Practical Depth Estimation with Image Segmentation and Serial U-Nets

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published