Regularized Losses (rloss) for Weakly-supervised CNN Segmentation
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
data scribbles parse XML Aug 19, 2018
deeplab densecrf loss Sep 5, 2018
exper visualize gradient Sep 5, 2018
.gitignore ignore files Aug 19, 2018
LICENSE Initial commit Aug 18, 2018
README.md Update README.md Sep 5, 2018
teaser.png sample Aug 19, 2018

README.md

Regularized Losses (rloss) for Weakly-supervised CNN Segmentation

To train CNN for semantic segmentation using weak-supervision (e.g. scribbles), we propose regularized loss framework. The loss have two parts, partial cross-entropy (pCE) loss over scribbles and regularization loss e.g. DenseCRF.

If you use the code here, please cite the following paper.

"On Regularized Losses for Weakly-supervised CNN Segmentation" PDF
Meng Tang, Federico Perazzi, Abdelaziz Djelouah, Ismail Ben Ayed, Christopher Schroers, Yuri Boykov
In European Conference on Computer Vision (ECCV), Munich, Germany, September 2018.

DenseCRF loss

To include DenseCRF loss for CNN, add the following loss layer. It takes two bottom blobs, first RGB image and the second is soft segmentation distributions. We need to specify bandwidth of Gaussian kernel for XY (bi_xy_std) and RGB (bi_rgb_std).

layer {
  bottom: "image"
  bottom: "segmentation"
  propagate_down: false
  propagate_down: true
  top: "densecrf_loss"
  name: "densecrf_loss"
  type: "DenseCRFLoss"
  loss_weight: ${DENSECRF_LOSS_WEIGHT}
  densecrf_loss_param {
    bi_xy_std: 100
    bi_rgb_std: 15
  }
}

The implementation of this loss layer is in:

This implementation is in CPU supporting multi-core parallelization. To enable, build with -fopenmp, see deeplab/Makefile.
Some examples of visualizing the gradients of DenseCRF loss are in exper/visualization. To generate visualization yourself, run the script exper/visualize_densecrf_gradient.py.

How to train

An example script for training is given in exper/run_pascal_scribble.sh.
We have training in two phases. First, we train with partial cross entropy loss. This gives mIOU of ~55.8% on VOC12 val set.

Then we fine-tune the network with extra regularization loss, e.g. DenseCRF loss. This boosts mIOU to ~62.3% on val set.

Our loss can be used for any network. For example, training better network of deeplab_msc_largeFOV gives ~63.2% mIOU on val set. Note that this is almost as good as that with full supervison (64.1%).

network weak supervision (~3% pixels labeled) full supervision
(partial) Cross Entropy Loss w/ DenseCRF Loss
Deeplab_largeFOV 55.8% 62.3% 63.0%
Deeplab_Msc_largeFOV n/a 63.2% 64.1%
Deeplab_VGG16 60.7% 64.7% 68.8%
Deeplab_ResNet101 69.5% 73.0% 75.6%

Table 1: mIOU on PASCAL VOC2012 val set

Trained models

The trained models for various networks with unregularized or regularized losses are released here.

Other Regularized Losses

In principle, our framework allows any differentialble regularization losses for segmentation, e.g. normalized cut clustering criterion and size constraint.
"Normalized Cut Loss for Weakly-supervised CNN Segmentation" PDF
Meng Tang, Abdelaziz Djelouah, Federico Perazzi, Yuri Boykov, Christopher Schroers
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, June 2018
“Size-constraint loss for weakly supervised CNN segmentation” PDF Code
Hoel Kervadec, Jose Dolz, Meng Tang, Eric Granger, Yuri Boykov, Ismail Ben Ayed
In International conference on Medical Imaging with Deep Learning (MIDL), Amsterdam, Netherlands, July 2018.

We are working on re-implementation of these regularization loss layers in Caffe, Tensorflow and PyTorch and will release soon. We will also try other state-of-the-art network backbones with regularized losses and include in this repository.