Skip to content

Latest commit

 

History

History
262 lines (202 loc) · 10.7 KB

DDP.md

File metadata and controls

262 lines (202 loc) · 10.7 KB

DDP Specification

DDP is a protocol between a client and a server that supports two operations:

  • Remote procedure calls by the client to the server.
  • The client subscribing to a set of documents, and the server keeping the client informed about the contents of those documents as they change over time.

This document specifies the version "pre1" of DDP. It's a rough description of the protocol and not intended to be entirely definitive.

General Message Structure:

DDP may use either SockJS or WebSockets as a lower-level message transport. (For now, you connect via SockJS at the URL /sockjs and via WebSockets at the URL /websocket. The latter is likely to change to be the main app URL specifying a WebSocket subprotocol.)

DDP messages are JSON objects, with some fields specified to be EJSON. Each one has a msg field that specifies the message type, as well as other fields depending on message type.

Establishing a DDP Connection:

Messages:

  • connect (client -> server)
    • session: string (if trying to reconnect to an existing DDP session)
    • version: string (the proposed protocol version)
    • support: array of strings (protocol versions supported by the client, in order of preference)
  • connected (server->client)
    • session: string (an identifier for the DDP session)
  • failed (server->client)
    • version: string (a suggested protocol version to connect with)

Procedure:

The server may send an initial message which is a JSON object lacking a msg key. If so, the client should ignore it. The client does not have to wait for this message. (This message is used to help implement hot code reload over our SockJS transport. It is currently sent over websockets as well, but probably should not be.)

  • The client sends a connect message.
  • If the server is willing to speak the version of the protocol specified in the connect message, it sends back a connected message.
  • Otherwise the server sends back a failed message with a version of DDP it would rather speak, informed by the connect message's support field, and closes the underlying transport.
  • The client is then free to attempt to connect again speaking a different version of DDP. It can do that by sending another connect message on a new connection. The client may optimistically send more messages after the connect message, assuming that the server will support the proposed protocol version. If the server does not support that version, it must ignore those additional messages.

The versions in the support field of the client's connect message are ordered according to the client's preference, most preferred first. If, according to this ordering, the version proposed by the client is not the best version that the server supports, the server must force the client to switch to the better version by sending a failed message.

When a client is connecting to a server for the first time it will typically set version equal to its most preferred version. If desired, the client can then remember the version that is ultimately negotiated with the server and begin with that version in future connections. The client can rely on the server sending a failed message if a better version is possible as a result of the client or the server having been upgraded.

Managing Data:

Messages:

  • sub (client -> server):
    • id: string (an arbitrary client-determined identifier for this subscription)
    • name: string (the name of the subscription)
    • params: optional array of EJSON items (parameters to the subscription)
  • unsub (client -> server):
    • id: string (the id passed to 'sub')
  • nosub (server -> client):
    • id: string (the id passed to 'sub')
  • error: optional Error (an error raised by the subscription as it concludes, or sub-not-found)
  • added (server -> client):
    • collection: string (collection name)
    • id: string (document ID)
    • fields: optional object with EJSON values
  • changed (server -> client):
    • collection: string (collection name)
    • id: string (document ID)
    • fields: optional object with EJSON values
    • cleared: optional array of strings (field names to delete)
  • removed (server -> client):
    • collection: string (collection name)
    • id: string (document ID)
  • ready (server -> client):
    • subs: array of strings (ids passed to 'sub' which have sent their initial batch of data)
  • addedBefore (server -> client):
    • collection: string (collection name)
    • id: string (document ID)
    • fields: optional object with EJSON values
    • before: string or null (the document ID to add the document before, or null to add at the end)
  • movedBefore (server -> client):
    • collection: string
    • id: string (the document ID)
    • before: string or null (the document ID to move the document before, or null to move to the end)

Procedure:

  • The client specifies sets of information it is interested in by sending sub messages to the server.

  • At any time, but generally informed by the sub messages, the server can send data messages to the client. Data consist of added, changed, and removed messages. These messages model a local set of data the client should keep track of.

    • An added message indicates a document was added to the local set. The ID of the document is specified in the id field, and the fields of the document are specified in the fields field. Minimongo interperets the string id field in a special way that transforms it to the _id field of Mongo documents.

    • A changed message indicates a document in the local set has new values for some fields or has had some fields removed. The id field is the ID of the document that has changed. The fields object, if present, indicates fields in the document that should be replaced with new values. The cleared field contains an array of fields that are no longer in the document.

    • A removed message indicates a document was removed from the local set. The id field is the ID of the document.

  • A collection is either ordered, or not. If a collection is ordered, the added message is replaced by addedBefore, which additionally contains the ID of the document after the one being added in the before field. If the document is being added at the end, before is set to null. For a given collection, the server should only send added messages or addedBefore messages, not a mixture of both, and should only send movedBefore messages for a collection with addedBefore messages.

    NOTE: The ordered collection DDP messages are not currently used by Meteor. They will likely be used by Meteor in the future.

  • The client maintains one set of data per collection. Each subscription does not get its own datastore, but rather overlapping subscriptions cause the server to send the union of facts about the one collection's data. For example, if subscription A says document x has fields {foo: 1, bar: 2} and subscription B says document x has fields {foo: 1, baz:3}, then the client will be informed that document x has fields {foo: 1, bar: 2, baz: 3}. If field values from different subscriptions conflict with each other, the server should send one of the possible field values.

  • When one or more subscriptions have finished sending their initial batch of data, the server will send a ready message with their IDs.

Remote Procedure Calls:

Messages:

  • method (client -> server):
    • method: string (method name)
    • params: optional array of EJSON items (parameters to the method)
    • id: string (an arbitrary client-determined identifier for this method call)
  • result (server -> client):
    • id: string (the id passed to 'method')
    • error: optional Error (an error thrown by the method (or method-not-found)
    • result: optional EJSON item (the return value of the method, if any)
  • updated (server -> client):
    • methods: array of strings (ids passed to 'method', all of whose writes have been reflected in data messages)

Procedure:

  • The client sends a method message to the server

  • The server responds with a result message to the client, carrying either the result of the method call, or an appropriate error.

  • Method calls can affect data that the client is subscribed to. Once the server has finished sending the client all the relevant data messages based on this procedure call, the server should send an updated message to the client with this method's ID.

  • There is no particular required ordering between result and updated messages for a method call.

Errors:

Errors appear in result and nosub messages in an optional error field. An error is an Object with the following fields:

  • error: number
  • reason: optional string
  • details: optional string

Such an Error is used to represent errors raised by the method or subscription, as well as an attempt to subscribe to an unknown subscription or call an unknown method.

Other erroneous messages sent from the client to the server can result in receiving a top-level msg: 'error' message in response. These conditions include:

  • sending messages which are not valid JSON objects
  • unknown msg type
  • other malformed client requests (not including required fields)
  • sending anything other than connect as the first message, or sending connect as a non-initial message

The error message contains the following fields:

  • reason: string describing the error
  • offendingMessage: if the original message parsed properly, it is included here

Appendix: EJSON

EJSON is a way of embedding more than the built-in JSON types in JSON. It supports all types built into JSON as plain JSON, plus the following:

Dates:

{"$date": MILLISECONDS_SINCE_EPOCH}

Binary data:

{"$binary": BASE_64_STRING}

(The base 64 string has + and / as characters 62 and 63, and has no maximum line length)

Escaped things that might otherwise look like EJSON types:

{"$escape": THING}

For example, here is the JSON value {$date: 10000} stored in EJSON:

{"$escape": {"$date": 10000}}

Note that escaping only causes keys to be literal for one level down; you can have further EJSON inside. For example, the following is the key $date mapped to a Date object:

{"$escape": {"$date": {"$date": 32491}}}

User-specified types:

{"$type": TYPENAME, "$value": VALUE}

Implementations of EJSON should try to preserve key order where they can. Users of EJSON should not rely on key order, if possible.

MongoDB relies on key order. When using EJSON with MongoDB, the implementation of EJSON must preserve key order.