Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
img
 
 
 
 
 
 
 
 
 
 
 
 

DREN_TensorFlow

Paper Link:Deep Rotation Equivirant Network

Caffe version code:https://github.com/microljy/DREN

Usage

Requirements

  • Install TensorFlow. Note that TensorFlow 0.12.0 is not supported.
  • Install matlab for preprocessing Rotated-MNIST.

Rotated-MNIST

Data

First, download the data and do preprocessing.

cd DREN_ROOT/data/rmnist
sh get_data.sh
matlab < data_preprocess.m
python generate_npy.py
rm data.mat

Training

You can train the model with this command.

python train_rmnist.py --model [MODEL_NAME]

The params MODEL_NAME could be z2cnn,dren_z2cnn or dren_z2cnn_x4.

Result

model error
Z2CNN 4.58%
DREN_Z2CNN 3.08%
DREN_Z2CNN_x4 1.76%

Cifar-10

Data

First, download the data and do preprocessing.

cd data/cifar-10
wget http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar -zxvf cifar-10-python.tar.gz
rm cifar-10-python.tar.gz

Training

You can train the model with this command.

python train_rmnist.py --model [MODEL_NAME]

The params MODEL_NAME could be resnet20,dren_resnet20_2b or dren_resnet20_2b_x4.

Result

model error
Resnet-20 9.00%
DREN_Resnet-20 8.51%
DREN_Resnet-20_x4 7.17%

Discussion

DREN can be used to boost the performance of classification of images that have rotation symmetry, such as aerial image, microscope images, CT images and so on. We have tested the DREN in lung nodule detection and found it helpful.

Citation

Please cite DREN in your publications if it helps your research:

@article{li2018deep,
  title={Deep rotation equivariant network},
  author={Li, Junying and Yang, Zichen and Liu, Haifeng and Cai, Deng},
  journal={Neurocomputing},
  volume={290},
  pages={26--33},
  year={2018},
  publisher={Elsevier}
}

Releases

No releases published

Packages

No packages published

Languages