Skip to content

milan-daus/kaankoca.github.io

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 

Repository files navigation

Literature on Reservoir Management

Sediment

  1. Aguiar, F.C., Martins, M.J., Silva, P.C., Fernandes, M.R., 2016. Riverscapes downstream of hydropower dams. Effects of altered flows and historical land-use change. Landscape and Urban Planning 153, 83-98.

  2. Annandale, G.W., 1987. Reservoir sedimentation. Elsevier, Amsterdam [u.a.].

  3. Atkinson, E. 1996. The Feasibility of Flushing Sediment from Reservoirs, TDR Project R5839, Report OD 137, HR Wallingford.

  4. Banasiak, R., Verhoeven, R., De Sutter, R., Tait, S., 2005. The erosion behaviour of biologically active sewer sediment deposits: Observations from a laboratory study. Water Res. 39, 5221–5231. https://doi.org/10.1016/j.watres.2005.10.011

  5. Batuca, D. and Jordaan, J. 2000. Silting and Desilting of Reservoirs. A.A. Balkema, Rotterdam.

  6. Beckers, F.; Haun, S.; Gerbersdorf, S.U.; Noack, M.; Dietrich, D.; Martin-Creuzburg, D.; Peeters, F.; Hofmann, H.; Glaser, R.; Wieprecht, S. CHARM - Challenges of Reservoir Management - Meeting environmental and social requirements. Hydrolink 2018, 16–18.

  7. Döll, P., Fiedler, K., Zhang, J., 2009. [Global-scale analysis of river flow alterations due to water withdrawals and reservoirs] Hydrol. Earth Syst. Sci. 13, 2413–2432.(https://doi.org/10.5194/hess-13-2413-2009)

  8. Droppo, I.G., D'Andrea, L., Krishnappan, B.G., Jaskot, C., Trapp, B., Basuvaraj, M., Liss, S.N., 2015. Fine-sediment dynamics: towards an improved understanding of sediment erosion and transport. J. Soils Sediments 15, 467–479. https://doi.org/10.1007/s11368-014-1004-3

  9. Fan, J. and Morris, G.L. 1992. [Reservoir Sedimentation. II: Reservoir Desiltation and Long-Term Storage Capacity] Journal of Hydraulic Engineering, ASCE, 118(3). (https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%290733-9429%281992%29118%3A3%28370%29)

  10. Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z.D., Wada, Y., Wisser, D., 2014. [Global water resources affected by human interventions and climate change] Proc. Natl. Acad. Sci. 111, 3251–3256. (https://doi.org/10.1073/pnas.1222475110)

  11. Harb, G. 2013. [Numerical Modeling of Sediment Transport Processes in Alpine Reservoirs] Dissertation, Schriftenreihe zur Wasserwirtschaft der Technischen Universität Graz, Band 73. (https://diglib.tugraz.at/numerical-modeling-of-sediment-transport-processes-in-alpine-reservoirs-2013)

  12. Haun, S., Kjærås, H., Løvfall, S. and Olsen, N.R.B. 2013. [Three-dimensional measurements and numerical modelling of suspended sediments in a hydropower reservoir] Journal of Hydrology 479: 180-188. (https://doi.org/10.1016/j.jhydrol.2012.11.060)

  13. Kondolf, G.M., Gao, Y., Annandale, G.W., Morris, G.L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, Ch., Sumi, T., Wang, H.-W.,Wang, Z., Wei, Z., Wu, B., Wu, C. and Ted Yang, Ch.T. 2014. [Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents] Earth’s Future 2(5): 256-280. (https://doi.org/10.1002/2013EF000184)

  14. Mahmood, K. 1987. [Reservoir sedimentation: impact, extent and mitigation] World Bank Technical Paper. 71, Washington D.C.. (https://documents.worldbank.org/pt/publication/documents-reports/documentdetail/888541468762328736/reservoir-sedimentation-impact-extent-and-mitigation)

  15. Milliman, J.D. and Farnsworth, K.L. 2011. [River Discharge to the Coastal Ocean - A Global Synthesis] Cambridge University Press. (https://doi.org/10.1017/CBO9780511781247)

  16. Milliman, J.D., Syvitski, J.P.M., 1992. [Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers] Journal of Geology 100, 325– 344. (https://doi.org/10.1086/629606)

  17. Morris, G.L. and Fan, J. 1998. [Reservoir Sediment Handbook] McGraw-Hill Book Co., New York. (https://www.reservoirsedimentation.com/)

  18. Mulligan, M., van Soesbergen, A., Sáenz, L., 2020. [GOODD, a global dataset of more than 38,000 georeferenced dams] Sci. Data 7, 31. (https://doi.org/10.1038/s41597-020-0362-5)

  19. Nilsson, C., Reidy, C.A., Dynesius, M., Revenga, C., 2005. [Fragmentation and Flow Regulation of the World’s Large River Systems] Science 308, 405–408. (https://doi.org/10.1126/science.1107887)

  20. Pohlert, T., Hillebrand, G., and Breitung, V. 2011. [Trends of persistent organic pollutants in the suspended matter of the river rhine] Hydrological Processes, 25:3803–3817. (https://doi.org/10.1002/hyp.8110)

  21. Shen, H.W. 1999. [Flushing sediment through reservoirs] IAHR Journal of Hydraulic Research, 37(6), 743–757. (https://doi.org/10.1080/0022168990949850)

  22. Sumi, T. and Kantoush, S.A. 2011. [Sediment management strategies for sustainable reservoir] In: Dams and Reservoirs under Changing Challenges, Eds. Schleiss, A.J. and Boes R.M. CRC Press. ISBN 9780415682671. (http://ecohyd.dpri.kyoto-u.ac.jp/content/files/sumi-paper/2011/cICOLD2011_Sumi_Kantoush.pdf)

  23. Syvitski, J.P.M., Vörösmarty, C.J., Kettner, A.J., Green, P., 2005. [Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean] Science 308, 376–380. (https://doi.org/10.1126/science.1109454)

  24. Vörösmarty, C.J., Meybeck, M., Fekete, B. and Sharma, K. 1997. The potential impact of neo-Castorization on sediment transport by the global network of rivers. In: Walling, D.E., and Probst, J.L. (Eds.). Human Impact on Erosion and Sedimentation. (Proc. Rabat Symposium, April 1997) (IAHS Publication 245). Wallingford, UK: 261–273 (https://iahs.info/uploads/dms/10840.261-273-245-Vorosmarty.pdf)

  25. Vörösmarty, C.J., Meybeck, M., Fekete, B., Sharma, K., Green, P. and Syvitski, J.P.M. 2003. [Anthropogenic sediment retention: major global impact from registered river impoundments] Global and Planetary Change, Vol. 39. Amsterdam, Elsevier Science, 169–90. (https://doi.org/10.1016/S0921-8181(03)00023-7)

  26. White, R. 2001. [Evacuation of sediments from reservoirs] Thomas Telford Publishing. (http://dx.doi.org/10.1680/eosfr.29538)

  27. Yoon, Y.N. 1992. [The state and the perspective of the direct sediment removal methods from reservoirs] International Journal of Sediment Research, 7(2), 99–116. (https://doi.org/10.1080/15715124.2019.1583667)

Greenhouse Gas emissions

  1. Barros, N., Cole, J.J., Tranvik, L.J., Prairie, Y.T., Bastviken, D., Huszar, V.L.M., del Giorgio, P., Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4, 593-596.

  2. Beaulieu, J.J., Smolenski, R.L., Nietch, C.T., Townsend-Small, A., Elovitz, M.S. (2014). High methane emissions from a midlatitude reservoir draining an agricultural watershed. Environmental Science & Technology, 48 (19), 11100-11108. https://doi.org/10.1021/es501871g.

  3. Deemer, B.R., Harrison, J.A., Li, S., Beaulieu, J.J., DelSontro, T., Barros, N., Bezerra-Neto, J.F., Powers, S.M., dos Santos, M.A., Vonk, J.A., 2016. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience 66, 949–964. https://doi.org/10.1093/biosci/biw117

  4. Deborde, J., Anschutz, P., Guérin, F., Poirier, D., Marty, D., Boucher, G., Thouzeau, G., Canton, M., Abril, G. (2010). Methane sources, sinks and fluxes in a temperate tidal Lagoon: The Arcachon lagoon (SW France). Estuarine, Coastal and Shelf Science, Elsevier, 89, 256-266 (hal-00524642)

  5. DelSontro, T., McGinnis, D.F., Sobek, S., Ostrovsky, I., Wehrli, B. (2010). Extreme methane emissions from a Swiss hydropower reservoir: Contribution from bubbling sediments. Environmental Science & Technology, 44 (7), 2419-2425. https://doi.org/10.1021/es9031369

  6. Encinas Fernandez, J., Peeters, F., Hofmann, H. (2014). [Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake] Environmental Science & Technology, 48, 7297-7304.(https://doi.org/10.1021/es4056164)

  7. Engle, D., Melack, J.M. (2000). [Methane emissions from an Amazon floodplain lake: Enhanced release during episodic mixing and during falling water] Biogeochemistry, 51 (1), 71-90. (https://doi.org/10.1023/A:1006389124823)

  8. Harrison, J.A., Deemer, B.R., Birchfield, M.K., O'Malley, M.T. (2017). [Reservoir water-level drawdowns accelerate and amplify methane emission] Environmental Science & Technology, 51(3), 1267-1277. (https://doi.org/10.1021/acs.est.6b03185)

  9. Hertwich, E.G. (2013). [Addressing biogenic greenhouse gas emissions from hydropower in LCA] Environ. Sci. Technol., 47(17): 9604-11. (https://doi.org/10.1021/es401820p)

  10. Li, S. Y., Zhang, Q. F., Bush, R. T. and Sullivan, L. A. (2015). [Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis] Environmental Science and Pollution Research International 22(7): 5325–5339. (https://doi.org/10.1007/s11356-015-4083-9)

  11. Luyssaert, S., Abri,l G., Andres, R., Bastviken, D., Bellassen, V., Bergamaschi, P., Bousquet, P., Chevallier, F., Ciais, P., Corazza, M., Dechow, R., Erb, K.H., Etiope, G., Fortems-Cheiney, A., Grassi, G., Hartmann, J., Jung, M., Lathière, J., Lohila, A., Mayorga, E., Moosdorf, N., Njakou, D.S., Otto, J., Papale, D., Peters, W., Peylin, P., Raymond, P., Rödenbeck, C., Saarnio, S., Schulze, E.D., Szopa, S., Thompson, R., Verkerk, P.J., Vuichard, N., Wang, R., Wattenbach, M., Zaehle, S. 2012. [The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005] Biogeosciences, 9, 3357-3380. (https://doi.org/10.5194/bg-9-3357-2012)

  12. Maeck, A., DelSontro, T., McGinnis, D. F., Fischer, H., Flury, S., Schmidt, M., Fietzek, P. and Lorke, A. 2013. [Sediment trapping by dams creates methane emission hot spots] Environmental Science and Technology 47(15): 8130–8137. (https://doi.org/10.1021/es4003907)

  13. Maeck, A., Hofmann, H., Lorke, A. (2014). [Pumping methane out of aquatic sediments - ebullition forcing mechanisms in an impounded river] Biogeosciences, 11 (11), 2925-2938. (https://doi.org/10.5194/bg-11-2925-2014)

  14. Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., Guth, P. 2013. [Global carbon dioxide emissions from inland waters] Nature, 503 (7476), 355-9. (https://doi.org/10.1038/nature12760)

  15. Sobek, S., DelSontro, T., Wongfun, N., Wehrli, B. 2012. [Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir] Geophysical Research Letters, 39 (1). (https://doi.org/10.1029/2011gl050144)

  16. Varadharajan, C., Hemond, H.F. (2012). [Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake] Journal of Geophysical Research: Biogeosciences, 117 (G2). (https://doi.org/10.1029/2011JG001866)

Biofilms

  1. Battin, T.J., Besemer, K., Bengtsson, M.M., Romani, A.M., Packmann, A.I., 2016. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263. https://doi.org/10.1038/nrmicro.2016.15

  2. Berke, A.P., Turner, L., Berg, H.C., Lauga, E., 2008. Hydrodynamic Attraction of Swimming Microorganisms by Surfaces. Phys. Rev. Lett. 101, 038102. https://doi.org/10.1103/PhysRevLett.101.038102

  3. Block, J.C., Haudidier, K., Paquin, J.L., Miazga, J., Levi, Y., 1993. Biofilm accumulation in drinking water distribution systems. Biofouling 6, 333–343. https://doi.org/10.1080/08927019309386235

  4. Burns, A., Ryder, D.S., 2001. Potential for biofilms as biological indicators in Australian riverine systems. Ecol. Manag. Restor. 2, 53–64. https://doi.org/10.1046/j.1442-8903.2001.00069.x

  5. Chen, X.D., Zhang, C.K., Zhou, Z., Gong, Z., Zhou, J.J., Tao, J.F., Paterson, D.M., Feng, Q., 2017. Stabilizing Effects of Bacterial Biofilms: EPS Penetration and Redistribution of Bed Stability Down the Sediment Profile. J. Geophys. Res. Biogeosciences 122, 3113–3125. https://doi.org/10.1002/2017JG004050

  6. Dang, H., Lovell, C.R., 2015. Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol. Mol. Biol. Rev. MMBR 80, 91–138. https://doi.org/10.1128/MMBR.00037-15

  7. Danovaro, R., Pusceddu, A., 2007. Biodiversity and ecosystem functioning in coastal lagoons: Does microbial diversity play any role? Estuar. Coast. Shelf Sci., Biodiversity and Ecosystem Functioning in Coastal and Transitional Waters 75, 4–12. https://doi.org/10.1016/j.ecss.2007.02.030

  8. de Brouwer, J.F.C., Wolfstein, K., Ruddy, G.K., Jones, T.E.R., Stal, L.J., 2005. Biogenic Stabilization of Intertidal Sediments: The Importance of Extracellular Polymeric Substances Produced by Benthic Diatoms. Microb. Ecol. 49, 501–512. https://doi.org/10.1007/s00248-004-0020-z

  9. Fang, H., Fazeli, M., Cheng, W., Dey, S., 2016. [Transport of biofilm-coated sediment particles] J. Hydraul. Res. 54, 631–645. (https://doi.org/10.1080/00221686.2016.1212938)

  10. Fang, H., Fazeli, M., Cheng, W., Huang, L., Hu, H., 2015. [Biostabilization and Transport of Cohesive Sediment Deposits in the Three Gorges Reservoir] PLoS ONE 10. (https://doi.org/10.1371/journal.pone.0142673)

  11. Fang, H., Zhao, H., Shang, Q., Chen, M., 2012. [Effect of biofilm on the rheological properties of cohesive sediment] Hydrobiologia 694, 171–181. (https://doi.org/10.1007/s10750-012-1140-y)

  12. Fang, H.W., Lai, H.J., Cheng, W., Huang, L., He, G.J., 2017. [Modeling sediment transport with an integrated view of the biofilm effects] Water Resour. Res. 53, 7536–7557. (https://doi.org/10.1002/2017WR020628)

  13. Fischer, H., Pusch, M., 2001. [Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river] Freshw. Biol. 46, 1335–1348. (https://doi.org/10.1046/j.1365-2427.2001.00753.x)

  14. Flemming, H.-C., 2020. [Biofouling and me: My Stockholm syndrome with biofilms] Water Res. 173, 115576. (https://doi.org/10.1016/j.watres.2020.115576)

  15. Flemming, H.-C., Wingender, J., 2010. [The biofilm matrix. Nat. Rev. Microbiol] 8, 623–633. (https://doi.org/10.1038/nrmicro2415)

  16. Flemming, H.-C., Wuertz, S., 2019. [Bacteria and archaea on Earth and their abundance in biofilms] Nat. Rev. Microbiol. 17, 247–260. (https://doi.org/10.1038/s41579-019-0158-9)

  17. Förstner, U., Heise, S., Schwartz, R., Westrich, B., Ahlf, W., 2004. [Historical Contaminated Sediments and Soils at the River Basin Scale] J. Soils Sediments 4, 247. (https://doi.org/10.1007/BF02991121)

  18. Foshtomi, M.Y., Braeckman, U., Derycke, S., Sapp, M., Gansbeke, D.V., Sabbe, K., Willems, A., Vincx, M., Vanaverbeke, J., 2015. [The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation] PLOS ONE 10, e0130116. (https://doi.org/10.1371/journal.pone.0130116)

  19. Geesey, G.G., Mutch, R., Costerton, J.W., Green, R.B., 1978. [Sessile bacteria: An important component of the microbial population in small mountain streams] 1. Limnol. Oceanogr. 23, 1214–1223. (https://doi.org/10.4319/lo.1978.23.6.1214)

  20. Gerbersdorf, S.U., Jancke, T., Westrich, B., Paterson, D.M., 2008. [Microbial stabilization of riverine sediments by extracellular polymeric substances] Geobiology 6, 57–69. (https://doi.org/10.1111/j.1472-4669.2007.00120.x)

  21. Gerbersdorf, S.U., Wieprecht, S., 2015. [Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture] Geobiology 13, 68–97. (https://doi.org/10.1111/gbi.12115)

  22. Gibbs, R.J., 1983. [Effect of natural organic coatings on the coagulation of particles] Environ. Sci. Technol. 17, 237–240. (https://doi.org/10.1021/es00110a011)

  23. Gilbertson, W.W., Solan, M., Prosser, J.I., 2012. [Differential effects of microorganism–invertebrate interactions on benthic nitrogen cycling] FEMS Microbiol. Ecol. 82, 11–22. (https://doi.org/10.1111/j.1574-6941.2012.01400.x)

  24. H. Tuson, H., B. Weibel, D., 2013. [Bacteria–surface interactions] Soft Matter 9, 4368–4380. (https://doi.org/10.1039/C3SM27705D)

  25. Huiming, Z., Hongwei, F., Minghong, C., 2011. [Floc architecture of bioflocculation sediment by ESEM and CLSM] Scanning 33, 437–445. (https://doi.org/10.1002/sca.20247)

  26. Jones, S., 2017. [Goo, glue, and grain binding: Importance of biofilms for diagenesis in sandstones] Geology 45, 959–960. (https://doi.org/10.1130/focus102017.1)

  27. Lozupone, C.A., Knight, R., 2007. [Global patterns in bacterial diversity] Proc. Natl. Acad. Sci. 104, 11436. (https://doi.org/10.1073/pnas.0611525104)

  28. Madsen, E.L., 2011. [Microorganisms and their roles in fundamental biogeochemical cycles] Curr. Opin. Biotechnol., Energy biotechnology – Environmental biotechnology 22, 456–464. (https://doi.org/10.1016/j.copbio.2011.01.008)

  29. Malarkey, J., Baas, J.H., Hope, J.A., Aspden, R.J., Parsons, D.R., Peakall, J., Paterson, D.M., Schindler, R.J., Ye, L., Lichtman, I.D., Bass, S.J., Davies, A.G., Manning, A.J., Thorne, P.D., 2015. [The pervasive role of biological cohesion in bedform development] Nat. Commun. 6. (https://doi.org/10.1038/ncomms7257)

  30. Nicolella, C., Zolezzi, M., Rabino, M., Furfaro, M., Rovatti, M., 2005. [Development of particle-based biofilms for degradation of xenobiotic organic compounds] Water Res. 39, 2495–2504. (https://doi.org/10.1016/j.watres.2005.04.016)

  31. Passarelli, C., Olivier, F., Paterson, D.M., Meziane, T., Hubas, C., 2014. [Organisms as cooperative ecosystem engineers in intertidal flats] J. Sea Res., Trophic significance of microbial biofilm in tidal flats 92, 92–101. (https://doi.org/10.1016/j.seares.2013.07.010)

  32. Paterson, D.M., Hope, J.A., Kenworthy, J., Biles, C.L., Gerbersdorf, S.U., 2018. [Form, function and physics: the ecology of biogenic stabilisation] J. Soils Sediments 18, 3044–3054. (https://doi.org/10.1007/s11368-018-2005-4)

  33. Righetti, M., Lucarelli, C., 2010. [Resuspension phenomena of benthic sediments: The role of cohesion and biological adhesion] River Res. Appl. 26, 404–413. (https://doi.org/10.1002/rra.1296)

  34. Schultz, P., Urban, N.R., 2008. [Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: A modeling study] Ecol. Model. 210, 1–14. (https://doi.org/10.1016/j.ecolmodel.2007.06.026)

  35. Shang, Q., Fang, H., Zhao, H., He, G., Cui, Z., 2014. [Biofilm effects on size gradation, drag coefficient and settling velocity of sediment particles] Int. J. Sediment Res. 29, 471–480. (https://doi.org/10.1016/S1001-6279(14)60060-3)

  36. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J., Mayes, A.M., 2008. [Science and technology for water purification in the coming decades] Nature 452, 301–310. (https://doi.org/10.1038/nature06599)

  37. Stoodley, P., Sauer, K., Davies, D.G., Costerton, J.W., 2002. [Biofilms as Complex Differentiated Communities] Annu. Rev. Microbiol. 56, 187–209. (https://doi.org/10.1146/annurev.micro.56.012302.160705)

  38. Vignaga, E., Sloan, D.M., Luo, X., Haynes, H., Phoenix, V.R., Sloan, W.T., 2013. [Erosion of biofilm-bound fluvial sediments] Nat. Geosci. 6, 770–774. (https://doi.org/10.1038/ngeo1891)

Cyanobacterial blooms

  1. Bullerjahn, G.S., McKay, R.M., Davis, T.W., Baker, D.B., Boyer, G.L., D'Anglada, L.V., Doucette, G.J., Ho, J.C., Irwin, E.G., Kling, C.L., Kudela, R.M., Kurmayer, R., Michalak, A.M., Ortiz, J.D., Otten, T.G., Paerl, H.W., Qin, B., Sohngen, B.L., Stumpf, R.P., Visser, P.M., Wilhelm, S.W., 2016. Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54, 223–238. https://doi.org/10.1016/j.hal.2016.01.003

  2. Callieri, C., Bertoni, R., Contesini, M., Bertoni, F., 2014. Lake Level Fluctuations Boost Toxic Cyanobacterial "Oligotrophic Blooms." PLoS ONE 9. https://doi.org/10.1371/journal.pone.0109526

  3. Chorus, I., 2012. Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries 151.

  4. Dietrich, D.R., Fischer, A., Michel, C., Hoeger, S.J., 2008. [Toxin mixture in cyanobacterial blooms – a critical comparison of reality with current procedures employed in human health risk assessment], in: Hudnell, H.K. (Ed.), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Advances in Experimental Medicine and Biology. Springer New York, pp. 885–912. (https://doi.org/10.1007/978-0-387-75865-7_39)

  5. Dolman, A.M., Rücker, J., Pick, F.R., Fastner, J., Rohrlack, T., Mischke, U., Wiedner, C., 2012. [Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus] PLOS ONE 7, e38757.(https://doi.org/10.1371/journal.pone.0038757)

  6. Ernst, B., Höger, S.J., O´Brien, E., Dietrich, D.R., 2009. [Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany] Harmful Algae 8, 329–342. (https://doi.org/10.1016/j.hal.2008.07.006)

  7. Ibelings, B.W., Backer, L.C., Kardinaal, W.E.A., Chorus, I., 2015. [Current approaches to cyanotoxin risk assessment and risk management around the globe] Harmful Algae 49, 63–74. (https://doi.org/10.1016/j.hal.2014.10.002)

  8. O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J., 2012. [The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change] Harmful Algae, Harmful Algae--The requirement for species-specific information 14, 313–334. (https://doi.org/10.1016/j.hal.2011.10.027)

  9. Paerl, H.W., Gardner, W.S., Havens, K.E., Joyner, A.R., McCarthy, M.J., Newell, S.E., Qin, B., Scott, J.T., 2016. [Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients] Harmful Algae, Global Expansion of Harmful Cyanobacterial Blooms: Diversity, ecology, causes, and controls 54, 213–222. (https://doi.org/10.1016/j.hal.2015.09.009)

  10. Paerl, H.W., Huisman, J., 2008. [Blooms Like It Hot] Science 320, 57–58. (https://doi.org/10.1126/science.1155398)

  11. Paerl, H.W., Otten, T.G., 2013. [Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls] Microb. Ecol. 65, 995–1010. (https://doi.org/10.1007/s00248-012-0159-y)

  12. Posch, T., Köster, O., Salcher, M.M., Pernthaler, J., 2012. [Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming] Nat. Clim. Change 2, 809–813. (https://doi.org/10.1038/nclimate1581)

  13. Quiblier, C., Susanna, W., Isidora, E.-S., Mark, H., Aurélie, V., Jean-François, H., 2013. [A review of current knowledge on toxic benthic freshwater cyanobacteria – Ecology, toxin production and risk management] Water Res. 47, 5464–5479. (https://doi.org/10.1016/j.watres.2013.06.042)

  14. Salmaso, N., 2010. [Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations] Freshw. Biol. 55, 825–846. (https://doi.org/10.1111/j.1365-2427.2009.02325.x)

  15. Salmaso, N., Buzzi, F., Garibaldi, L., Morabito, G., Simona, M., 2012. [Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps] Aquat. Sci. 74, 555–570. (https://doi.org/10.1007/s00027-012-0248-5)

Social Interactions

  1. Blackbourn, D.; Rennert, U. 2008. Die Eroberung der Natur - Eine Geschichte der deutschen Landschaft, 3rd ed.; Pantheon: München, Germany, ISBN 9783570550632

  2. Carnea, Michael, M., 1997. Hydropower Dams and Social Impacts. A Sociological Perspective.

  3. Daus, M., Koberger, K., Gnutzmann, N., Hertrich, T., Glaser, R., 2019. Transferring Water While Transforming Landscape: New Societal Implications, Perceptions and Challenges of Management in the Reservoir System Franconian Lake District. Water 2019, 11(12), 2469; https://doi.org/10.3390/w11122469

  4. Kirchherr, J., Pohlner, H., Charles, K.J., 2016. Cleaning up the big muddy. A meta-synthesis of the research on the social impact of dams. Environmental Impact Assessment Review 60, 115-125.

  5. Nguyen, H., Pham, T., Lobry de Bruyn, L., 2017. Impact of Hydroelectric Dam Development and Resettlement on the Natural and Social Capital of Rural Livelihoods in Bo Hon Village in Central Vietnam. Sustainability 9, 1422.

  6. EU, 2000. Good-quality water in Europe (EU Water Directive)

  7. Deutscher Bundestag, 2009. Gesetz zur Ordnung des Wasserhaushalts (Wasserhaushaltsgesetz)

  8. Dittmann, R., Froehlich, F.; Pohl, R., Ostrowski, M. 2009. [Optimum multi-objective reservoir operation with emphasis on flood control and ecology] Nat. Hazards Earth Syst. Sci., 9.(https://doi.org/10.5194/nhess-9-1973-2009)

  9. European Parliament And The Council, 2007. [on the assessment and management of flood risks] (https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32007L0060&from=DE)

  10. German Ministry of Justice, 2020. [Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung)] (https://www.gesetze-im-internet.de/trinkwv_2001/BJNR095910001.html)

  11. Giesecke, J., Mosonyi, E., 2009. [Wasserkraftanlagen. Planung, Bau und Betrieb] Springer, Heidelberg. (https://www.springer.com/de/book/9783540889892)

  12. Glaser, R. 2014. [Global change. Das neue Gesicht der Erde] Primus Verlag, Darmstadt, Germany, ISBN 9783863120993. (https://www.wbg-wissenverbindet.de/5467/global-change)

  13. Godde, D., Engels, K., Schmid, S., Achatz, R., Haupt, O., Beer, C., Höller, S., Jaberg, H., Miller, B., Heigerth, G., Niemann, A., Perau, E., Schreiber, U., Koch, M.K., Schüttrumpf, H., Pummer, E., Günther, M., Plenker, D., 2015. [Pumpspeicherkraftwerke] In: Heimerl, S. (Ed.), Wasserkraftprojekte, Band 2. Ausgewählte Beiträge aus der Fachzeitschrift WasserWirtschaft. Springer Vieweg, Wiesbaden, pp. 277-354. (https://www.springer.com/de/book/9783658077280)

  14. Hanson, T.R.; Upton Hatch, L.; Clonts, H.C. 2007. [Reservoir water level impacts on recreation, property and non user values] In Journal of the American water ressource association. 38/4. p.1007-1018. (10.1111/j.1752-1688.2002.tb05541.x)

  15. International Commission on Large Dams (ICOLD), 2013. [Talsperren in Deutschland] Springer Vieweg: Wiesbaden, Germany, 2013; ISBN 978-383-48210-7-2. (https://www.springer.com/de/book/9783834814470)

  16. Kirchherr, J., Charles, K.J., 2016. [The social impacts of dams. A new framework for scholarly analysis] Environmental Impact Assessment Review 60, 99-114. (https://doi.org/10.1016/j.eiar.2016.02.005)

  17. Kirchherr, J., Pohlner, H., Charles, K.J., 2016. [Cleaning up the big muddy. A meta-synthesis of the research on the social impact of dams] Environmental Impact Assessment Review 60, 115-125. (https://doi.org/10.1016/j.eiar.2016.02.007)

  18. Kleinhenz, A., Koenig, A., 2018. [Home ranges and movements of resident graylag geese (Anser anser) in breeding and winter habitats in Bavaria, South Germany] PloS one 13, e0202443. (https://doi.org/10.1371/journal.pone.0202443)

  19. Kornijów, R., 2009. [Controversies around dam reservoirs. Benefits, costs and future] Ecohydrology & Hydrobiology 9, 141-148. (https://doi.org/10.2478/v10104-010-0001-4)

  20. Nguyen, H., Pham, T., Lobry de Bruyn, L., 2017. [Impact of Hydroelectric Dam Development and Resettlement on the Natural and Social Capital of Rural Livelihoods in Bo Hon Village in Central Vietnam] Sustainability 9, 1422. (https://doi.org/10.3390/su9081422)

  21. Schrenk-Bergt, C., Krause, D., Lewandowski, J., Steinberg, C.E.W., 2004. [Eutrophication Problems and Their Potential Solutions in the Artificial Shallow Lake Altmühlsee (Germany)] Studia Quarternaria 21, 73-86. (https://doi.org/10.2478/limre-2014-0006)

  22. Siegmund-Schultze, M., do Carmo Sobral, M., Alcoforado de Moraes, M.M.G., Almeida-Cortez, J.S., Azevedo, J.R.G., Candeias, A.L., Cierjacks, A., Gomes, E.T.A., Gunkel, G., Hartje, V., Hattermann, F.F., Kaupenjohann, M., Koch, H., Köppel, J., 2018. The legacy of large dams and their effects on the water-land nexus. Reg Environ Change 18, 1883-1888. (https://doi.org/10.1007/s10113-018-1414-7)

  23. Votruba, L., Broža, V., 1989. [Water management in reservoirs] Elsevier, Amsterdam. (https://www.elsevier.com/books/water-management-in-reservoirs/votruba/978-0-444-98933-8)

  24. Weimer-Jehle, W. 2006. [Cross-Impact Balances: A System-Theoretical Approach to Cross-Impact Analysis] Technological Forecasting and Social Change, 73:4, 334-361. (https://doi.org/10.1016/j.techfore.2005.06.005)

  25. World Commission on Dams, 2000. [Dams and development. A new framework for decision-making] Earthscan, London. ISBN: 1-85383-798-9 (https://www.internationalrivers.org/sites/default/files/attached-files/world_commission_on_dams_final_report.pdf)

  26. Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. 2015. [A global boom in hydropower dam construction] Aquat Sci, 77, 161–170. (doi:10.1007/s00027-014-0377-0)

  27. Zubala, T., 2009. [Influence of dam reservoir on the water quality in a small upland river] Ecohydrology & Hydrobiology 9, 165-173. (https://doi.org/10.2478/v10104-010-0010-3)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published