Skip to content
Switch branches/tags

Deep Averaging Networks (DAN)

code for model described in along with negation dataset (negation_dataset.txt). feel free to email me at with any comments/problems/questions/suggestions.


  • python 2.7.9, numpy 1.9.2 (might work w/ other versions but not tested), nltk

commands to run DAN on Stanford Sentiment Treebank:

  • bash (downloads word embeddings and dataset, preprocesses PTB trees into DAN format)
  • python (can tweak hyperparameters via command-line arguments, currently this runs the fine-grained experiment on only root-level labels and should take a few minutes to finish training)

QA DAN code available in the repository for our full quiz bowl system

DAN input format (for your own data!):

  • each training/test instance must be a tuple with the following format: ([list of word embedding lookup indices associated with text], label)
  • if you want to use pretrained word embeddings, you should also pass a pickled matrix using the --We argument, where the matrix is of size d x V (each column stores the embedding for the corresponding word lookup index)

important hyperparameters:

  • batch size (the smaller the better, but also slower)
  • adagrad initial learning rate (should be decreased as the batch size is decreased)
  • word dropout probability (30% is the default but might be too high for some tasks)
  • number of epochs (increase when using random initialization)

if you use this code, please cite:

    Title = {Deep Unordered Composition Rivals Syntactic Methods for Text Classification},
    Booktitle = {Association for Computational Linguistics},
    Author = {Mohit Iyyer and Varun Manjunatha and Jordan Boyd-Graber and Hal {Daum\'{e} III}},
    Year = {2015},
    Location = {Beijing, China}


Deep Averaging Networks




No releases published


No packages published