Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Compound excitation DC machines and examples #4106

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
@@ -0,0 +1,260 @@
within Modelica.Electrical.Machines.BasicMachines.DCMachines;
model DC_CompoundExcited "Compound excited linear DC machine"
extends Machines.Interfaces.PartialBasicDCMachine(
wNominal(start=1410*2*pi/60),
final ViNominal=VaNominal - (Machines.Thermal.convertResistance(
Ra,
TaRef,
alpha20a,
TaNominal) + Machines.Thermal.convertResistance(
Res,
TeRef,
alpha20e,
TeNominal))*IaNominal - Machines.Losses.DCMachines.brushVoltageDrop(brushParameters, IaNominal),
final psi_eNominal=Lme*IeNominal + excitationTurnsRatio*Lme*abs(IaNominal),
redeclare final Machines.Thermal.DCMachines.ThermalAmbientDCCE thermalAmbient(Te=TeOperational,
final Tse=TeOperational),
redeclare final Machines.Interfaces.DCMachines.ThermalPortDCCE thermalPort,
redeclare final Machines.Interfaces.DCMachines.ThermalPortDCCE internalThermalPort,
redeclare final Machines.Interfaces.DCMachines.PowerBalanceDCCE powerBalance(
final powerShuntExcitation=vee*iee,
final lossPowerShuntExcitation=ree.LossPower,
final powerSeriesExcitation=ves*ies,
final lossPowerSeriesExcitation=res.LossPower),
core(final w=airGapDC.w));

parameter SI.Current IeNominal(start=1)
"Nominal shunt excitation current" annotation (Dialog(tab="Excitation"));
parameter SI.Resistance Res(start=0.01) "Series excitation resistance at TeRef"
annotation (Dialog(tab="Excitation"));
parameter SI.Resistance Ree(start=100) "Shunt excitation resistance at TeRef"
annotation (Dialog(tab="Excitation"));
parameter SI.Temperature TeRef(start=293.15) "Reference temperature of excitation resistance"
annotation (Dialog(tab="Excitation"));
parameter Machines.Thermal.LinearTemperatureCoefficient20 alpha20e(start=0)
"Temperature coefficient of excitation resistance" annotation (Dialog(tab="Excitation"));
parameter SI.Inductance Le(start=1) "Total field excitation inductance"
annotation (Dialog(tab="Excitation"));
parameter Real sigmae(
min=0,
max=0.99,
start=0) "Stray fraction of total excitation inductance"
annotation (Dialog(tab="Excitation"));
parameter SI.Temperature TeNominal(start=293.15) "Nominal series excitation temperature"
annotation (Dialog(tab="Nominal parameters"));
parameter SI.Temperature TeOperational(start=293.15) "Operational series excitation temperature"
annotation (Dialog(group="Operational temperatures", enable=not useThermalPort));
parameter Real excitationTurnsRatio(start=-0.005) "Ratio of series excitation turns over shunt excitation turns"
annotation (Dialog(tab="Excitation"));
output SI.Voltage vee=pin_eep.v - pin_en.v "Field shunt excitation voltage";
output SI.Voltage ves=pin_esp.v - pin_en.v "Field series excitation voltage";
output SI.Current iee=pin_eep.i "Field shunt excitation current";
output SI.Current ies=pin_esp.i "Field series excitation current";
Machines.BasicMachines.Components.AirGapDC airGapDC(
final turnsRatio=turnsRatio,
final Le=Lme,
final quasiStatic=quasiStatic) annotation (Placement(transformation(extent={{-10,-10},{10,10}}, rotation=270)));
Machines.BasicMachines.Components.CompoundDCExcitation compoundDCExcitation(final excitationTurnsRatio=
excitationTurnsRatio) annotation (Placement(transformation(extent={{-10,-30},{10,-10}})));
Modelica.Electrical.Analog.Basic.Ground ground
annotation (Placement(transformation(extent={{-30,-30},{-10,-10}})));
Modelica.Electrical.Analog.Basic.Resistor res(
final R=Res,
final T_ref=TeRef,
final alpha=Machines.Thermal.convertAlpha(alpha20e, TeRef),
final useHeatPort=true)
annotation (Placement(transformation(
origin={-80,50},
extent={{-10,10},{10,-10}},
rotation=270)));
Machines.BasicMachines.Components.InductorDC lesigmas(final L=Lesigma*excitationTurnsRatio,
final quasiStatic=quasiStatic)
annotation (Placement(transformation(
extent={{-10,-10},{10,10}},
rotation=270,
origin={-80,20})));
Modelica.Electrical.Analog.Interfaces.PositivePin pin_esp "Positive series excitation pin"
annotation (Placement(transformation(extent={{-110,70},{-90,50}})));
Modelica.Electrical.Analog.Interfaces.NegativePin pin_en
"Negative series excitation pin" annotation (Placement(transformation(
extent={{-90,10},{-110,-10}})));
Modelica.Electrical.Analog.Interfaces.PositivePin pin_eep "Positive series excitation pin"
annotation (Placement(transformation(extent={{-110,-50},{-90,-70}})));
Modelica.Electrical.Analog.Basic.Resistor ree(
final R=Ree,
final T_ref=TeRef,
final alpha=Machines.Thermal.convertAlpha(alpha20e, TeRef),
final useHeatPort=true)
annotation (Placement(transformation(
origin={-80,-60},
extent={{-10,10},{10,-10}},
rotation=0)));
Machines.BasicMachines.Components.InductorDC lesigmae(final L=Lesigma, final quasiStatic=quasiStatic)
annotation (Placement(transformation(
extent={{-10,-10},{10,10}},
rotation=0,
origin={-56,-60})));
protected
final parameter SI.Inductance Lme=Le*(1 - sigmae) "Main part of excitation inductance";
final parameter SI.Inductance Lesigma=Le*sigmae "Stray part of excitation inductance" annotation (Evaluate=true);
equation
connect(airGapDC.pin_ap, la.n) annotation (Line(
points={{10,10},{10,60}}, color={0,0,255}));
connect(airGapDC.support, internalSupport) annotation (Line(
points={{-10,0},{-40,0},{-40,-90},{60,-90},{60,-100}}));
connect(airGapDC.flange, inertiaRotor.flange_a) annotation (Line(
points={{10,0},{70,0},{70,0}}));
connect(pin_esp, res.p) annotation (Line(points={{-100,60},{-80,60}}, color={0,0,255}));
connect(res.n, lesigmas.p) annotation (Line(points={{-80,40},{-80,30}}, color={0,0,255}));
connect(airGapDC.pin_en, compoundDCExcitation.pin_n) annotation (Line(
points={{-10,-10},{-10,-10}}, color={0,0,255}));
connect(compoundDCExcitation.pin_p, airGapDC.pin_ep) annotation (Line(
points={{10,-10},{10,-10}}, color={0,0,255}));
connect(airGapDC.pin_en, ground.p) annotation (Line(
points={{-10,-10},{-20,-10}}, color={0,0,255}));
connect(compoundDCExcitation.pin_sen, pin_en) annotation (Line(
points={{-10,-30},{-60,-30},{-60,0},{-100,0}},
color={0,0,255}));
connect(compoundDCExcitation.pin_sep, lesigmas.n)
annotation (Line(points={{-2,-30},{-2,-40},{-80,-40},{-80,10}}, color={0,0,255}));
connect(airGapDC.pin_an, brush.p) annotation (Line(
points={{-10,10},{-10,60}}, color={0,0,255}));
connect(res.heatPort, internalThermalPort.heatPortSeriesExcitation)
annotation (Line(points={{-70,50},{-60,50},{-60,40},{50,40},{50,-80},{0,-80}}, color={191,0,0}));
connect(compoundDCExcitation.pin_sen, compoundDCExcitation.pin_en)
annotation (Line(points={{-10,-30},{-10,-36},{2,-36},{2,-30}}, color={0,0,255}));
connect(pin_eep, ree.p) annotation (Line(points={{-100,-60},{-90,-60}}, color={0,0,255}));
connect(ree.n, lesigmae.p) annotation (Line(points={{-70,-60},{-66,-60}}, color={0,0,255}));
connect(lesigmae.n, compoundDCExcitation.pin_ep) annotation (Line(points={{-46,-60},{10,-60},{10,-29.8}}, color={0,0,255}));
connect(ree.heatPort, internalThermalPort.heatPortShuntExcitation)
annotation (Line(points={{-80,-50},{-80,-44},{50,-44},{50,-80},{0,-80}}, color={191,0,0}));
annotation (
defaultComponentName="dcse",
Icon(coordinateSystem(preserveAspectRatio=true, extent={{-100,-100},{
100,100}}), graphics={
Line(points={{-100,10},{-105,11},{-109,15},{-110,20},{-109,25},{-105,29},{-100,30}},
color={0,0,255}),
Line(points={{-100,30},{-105,31},{-109,35},{-110,40},{-109,45},{-105,49},{-100,50}},
color={0,0,255}),
Line(points={{-130,-34},{-129,-29},{-125,-25},{-120,-24},{-115,-25},{-111,-29},{-110,-34}},
color={0,0,255}),
Line(points={{-110,-34},{-109,-29},{-105,-25},{-100,-24},{-95,-25},{-91,-29},{-90,-34}},
color={0,0,255}),
Line(points={{-90,-34},{-89,-29},{-85,-25},{-80,-24},{-75,-25},{-71,-29},{-70,-34}},
color={0,0,255}),
Line(points={{-100,-50},{-100,-40},{-70,-40},{-70,-32}},color={0,0,255}),
Line(points={{-100,-10},{-100,-20},{-130,-20},{-130,-34}},
color={0,0,
255})}),
Documentation(info="<html>
<p><strong>Model of a DC Machine with compound excitation.</strong><br>
Armature resistance and inductance are modeled directly after the armature pins, then using a <em>AirGapDC</em> model.<br>
The machine models take the following loss effects into account:
</p>

<ul>
<li>heat losses in the temperature dependent armature winding resistance</li>
<li>heat losses in the temperature dependent excitation winding resistance</li>
<li>brush losses in the armature circuit</li>
<li>friction losses</li>
<li>core losses (only eddy current losses, no hysteresis losses)</li>
<li>stray load losses</li>
</ul>

<p>Saturation is modelled <em>AirGapDC</em> model.<br>
Compound excitation has to be connected by the user's external circuit.
<br><strong>Default values for machine's parameters (a realistic example) are:</strong><br></p>
<table>
<tr>
<td>stator's moment of inertia</td>
<td>0.29</td><td>kg.m2</td>
</tr>
<tr>
<td>rotor's moment of inertia</td>
<td>0.15</td><td>kg.m2</td>
</tr>
<tr>
<td>nominal armature voltage</td>
<td>100</td><td>V</td>
</tr>
<tr>
<td>nominal armature current</td>
<td>100</td><td>A</td>
</tr>
<tr>
<td>nominal torque</td>
<td>63.66</td><td>Nm</td>
</tr>
<tr>
<td>nominal speed</td>
<td>1410</td><td>rpm</td>
</tr>
<tr>
<td>nominal mechanical output</td>
<td>9.4</td><td>kW</td>
</tr>
<tr>
<td>efficiency</td>
<td>94.0</td><td>% only armature</td>
</tr>
<tr>
<td>armature resistance</td>
<td>0.05</td><td>Ohm at reference temperature</td>
</tr>
<tr>
<td>reference temperature TaRef</td>
<td>20</td><td>&deg;C</td>
</tr>
<tr>
<td>temperature coefficient alpha20a </td>
<td>0</td><td>1/K</td>
</tr>
<tr>
<td>armature inductance</td>
<td>0.0015</td><td>H</td>
</tr>
<tr>
<td>excitation resistance</td>
<td>0.01</td><td>Ohm at reference temperature</td>
</tr>
<tr>
<td>reference temperature TeRef</td>
<td>20</td><td>&deg;C</td>
</tr>
<tr>
<td>temperature coefficient alpha20e</td>
<td>0</td><td>1/K</td>
</tr>
<tr>
<td>excitation inductance</td>
<td>0.0005</td><td>H</td>
</tr>
<tr>
<td>stray part of excitation inductance</td>
<td>0</td><td> </td>
</tr>
<tr>
<td>armature nominal temperature TaNominal</td>
<td>20</td><td>&deg;C</td>
</tr>
<tr>
<td>series excitation nominal temperature TeNominal</td>
<td>20</td><td>&deg;C</td>
</tr>
<tr>
<td>armature operational temperature TaOperational</td>
<td>20</td><td>&deg;C</td>
</tr>
<tr>
<td>series excitation operational temperature TeOperational</td>
<td>20</td><td>&deg;C</td>
</tr>
</table>
Armature resistance resp. inductance include resistance resp. inductance of commutating pole winding and
compensation winding, if present.<br>
Parameter nominal armature voltage includes voltage drop of series excitation;<br>
but for output the voltage is split into:<br>
va = armature voltage without voltage drop of series excitation<br>
ve = voltage drop of series excitation
</html>"));
end DC_CompoundExcited;
@@ -1,3 +1,4 @@
DC_PermanentMagnet
DC_ElectricalExcited
DC_SeriesExcited
DC_CompoundExcited
@@ -0,0 +1,12 @@
within Modelica.Electrical.Machines.BasicMachines.QuasiStaticDCMachines;
model DC_CompoundExcited "Quasi-static compound excited linear DC machine"
extends Machines.BasicMachines.DCMachines.DC_CompoundExcited(final quasiStatic=
true);
extends Machines.Icons.QuasiStaticMachine;
annotation (defaultComponentName="dcse", Documentation(info="<html>
<strong>Quasi-static model of a DC Machine with Compound excitation.</strong><br>
This model is fully compatible with the
<a href=\"modelica://Modelica.Electrical.Machines.BasicMachines.DCMachines.DC_CompoundExcited\">transient machine model of a DC machine with compound excitation</a>;
the only difference is that electrical transients are neglected.
</html>"));
end DC_CompoundExcited;
@@ -1,3 +1,4 @@
DC_PermanentMagnet
DC_ElectricalExcited
DC_SeriesExcited
DC_CompoundExcited