Skip to content

Commit

Permalink
added these
Browse files Browse the repository at this point in the history
  • Loading branch information
bartsnapp committed Oct 22, 2018
1 parent 3239bc4 commit 2da4247
Show file tree
Hide file tree
Showing 3 changed files with 138 additions and 84 deletions.
198 changes: 114 additions & 84 deletions multipleIntegrals/digInIntegralsWithTrivialIntegrands.tex
Original file line number Diff line number Diff line change
Expand Up @@ -264,7 +264,7 @@ \subsection{Changing the order of integration}
We can change the order of integration. This can make a big difference
in the difficulty of the integral in question. This can be somewhat
challenging. If you have a graph of the region in question, this can
help quite a bit. If not, then a stragety is to
help quite a bit. If not, then a strategy is to
\begin{itemize}
\item Find absolute bounds for each variable.
\item Solve inequalities that will allow you to integrate:
Expand Down Expand Up @@ -304,7 +304,7 @@ \subsection{Changing the order of integration}
Let's see another example.


\begin{question}
\begin{example}
Consider:
\[
\int_{-6}^6 \int_{y^2/3}^12 \d x \d y
Expand All @@ -327,84 +327,144 @@ \subsection{Changing the order of integration}
\iint_R \d A = \int_{\answer{0}}^{\answer{12}}\int_{\answer{-\sqrt{3x}}}^{\answer{\sqrt{3x}}} \d y \d x
\]
\end{explanation}
\end{question}
\end{example}

Sometimes when you switch the order of integration, you will need to
write the sum of iterated integrals. You can recognize this by the
fact that you won't be able to express






And now for one more example of using a double integral to compute the
area of a region.
fact that you won't be able to find a single curve to bound your inner
integral. This will be more clear with an example.

\begin{example}
Set-up and evaluate an iterated integral that will compute the area
of the region below via a double integral:
Consider the region:
\begin{image}
\begin{tikzpicture}
\begin{axis}[
tick label style={font=\scriptsize},axis y line=middle,axis x line=middle,name=myplot,axis on top,%
ymin=-.5,ymax=1.1,%
xmin=-.5,xmax=1.1%
tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,
name=myplot,
xtick={1,2,...,5},
ytick={1,2,...,4},
grid=major,
grid style={dashed, gridColor},
ymin=-.5,ymax=4.5,%
xmin=-.5,xmax=5.5,
rounded corners=.5pt
]
\draw (axis cs: .5,.4) node {$R$}
(axis cs: .5,.8) node [rotate=26] {\scriptsize $y=\sqrt{x}$}
(axis cs: .75,.16) node [rotate=29] {\scriptsize $y=x^4$};
\draw [ultra thick,penColor] (axis cs:1,1) -- (axis cs: 1,4)-- (axis cs: 5,2) -- cycle;

\addplot [penColor,ultra thick, smooth,domain=0:1.05,samples=20] ({x},{x^4});
\addplot [penColor,ultra thick, smooth,domain=0:1.05,samples=20] ({x^2},{x});
\draw (axis cs: 2.5,2.5) node {$R$};
\end{axis}

\node [right] at (myplot.right of origin) {\scriptsize $x$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\end{tikzpicture}
\end{image}
Set-up iterated integrals that compute the area of $R$.
\begin{explanation}
Our region above can be defined by:
First we'll integrate with respect to $y$ and then $x$. Here
\[
R=\{(x,y):\text{$0\leq x\leq 1$ and $x^4\leq y\leq \sqrt{x}$}\}
\answer[given]{1}\le x \le \answer[given]{5}
\]
The area of this region is given by, write with me,
and
\[
\answer[given]{(x+3)/4}\le y \le \answer[given]{(9-x)/2}
\]
so our integral is:
\[
\int_{\answer[given]{1}}^{\answer[given]{5}} \int_{\answer[given]{(x+3)/4}}^{\answer[given]{(9-x)/2}}\d y \d x
\]

Now let's integrate with respect to $x$ and then $y$. If we give
absolute bounds to our inequalites above, we see something
strange:
\[
1 \le \answer[given]{(x+3)/4}\le y \le \answer[given]{(9-x)/2} \le 4
\]
This is actually \textbf{two} inequalities (note we can see this
from the graph):
\begin{align*}
1 &\le \answer[given]{(x+3)/4}\le y && \text{and}\\
y &\le \answer[given]{(9-x)/2} \le 4
\end{align*}
Solving for $x$ in these inequalities we find:
\begin{align*}
\int_{\answer[given]{0}}^{\answer[given]{1}}\int_{\answer[given]{x^4}}^{\answer[given]{\sqrt{x}}}\d y \d x &= \int_{\answer[given]{0}}^{\answer[given]{1}} \eval{\answer[given]{y}}_{\answer[given]{x^4}}^{\answer[given]{\sqrt{x}}} \d x\\
&= \int_{\answer[given]{0}}^{\answer[given]{1}} \left(\answer[given]{\sqrt{x}-x^4}\right) \d x\\
&= \eval{\answer[given]{2x^{3/2}/3 - x^5/5}}_{\answer[given]{0}}^{\answer[given]{1}}\\
&= \answer[given]{7/15}.
1 &\le x \le 4y-3 && \text{and}\\
1 &\le x \le 9-2y
\end{align*}
Here $x$ is bounded by two \textbf{different} curves! When this
happens, it is probably best to look at the graph of the
situation:
\begin{image}
\begin{tikzpicture}
\begin{axis}[
tick label style={font=\scriptsize},
axis y line=middle,axis x line=middle,
name=myplot,
xtick={1,2,...,5},
ytick={1,2,...,4},
grid=major,
grid style={dashed, gridColor},
ymin=-.5,ymax=4.5,%
xmin=-.5,xmax=5.5,
rounded corners=.5pt
]
\draw [ultra thick,penColor] (axis cs:1,1) -- (axis cs: 1,4)-- (axis cs: 5,2) -- cycle;

\draw (axis cs: 2.5,2.5) node {$R$};
\node [above right,penColor] at (axis cs: 3,3) {$x=9-2y$};
\node [below right, penColor] at (axis cs: 3,1.5) {$x=4y-3$};
\end{axis}
\node [right] at (myplot.right of origin) {\scriptsize $x$};
\node [above] at (myplot.above origin) {\scriptsize $y$};
\end{tikzpicture}
\end{image}
Thus we see that the area can be found by the sum:
\[
\int_1^2 \int_{\answer[given]{1}}^{\answer[given]{4y-3}}\d x \d y +\int_2^4 \int_{\answer[given]{1}}^{\answer[given]{9-2y}}\d x \d y
\]
\end{explanation}
\end{example}

\begin{question}
In the previous example, we integrated with respect to $y$
first. Set-up an integral that computes the area of $R$ that
integrates with respect to $x$ first.
\begin{prompt}
Start by finding overall bounds for our variables. In this case:
\begin{align*}
0\le &x \le 1\\
\answer{0}\le x^4\le &y \le \sqrt{x}\le \answer{1}
\end{align*}
Now, write $x$ in terms of $y$. Since $y$ is bounded by $x$ on
both sides, we'll do this in two steps. Write with me:
\begin{align*}
\answer{0}\le &x^4\le y\\
0 \le &x \le \answer{y^{1/4}}
\end{align*}
and
\begin{align*}
y\le &\sqrt{x}\le \answer{1}\\
\answer{y^2} \le &x \le 1
\end{align*}
We may now write our desired integral:



\subsection{Why change the order of integration?}

You may ask yourself, ``Why change the order of integration?''
Sometimes changing the region can make a difficult (impossible)
antiderivative easier (not impossible). Let's see an example.

\begin{example}
Compute:
\[
\int_0^{\pi/2}\int_y^{\pi/2} \frac{\sin(x)}{x} \d x \d y
\]
\begin{explanation}
Here you don't stand a chance if you try to antidifferentiate with
respect to $x$. So the trick is to immediately swap the order of
antidifferentation. Starting by writing absolute bounds for $x$
and $y$:
\[
\iint_R \d A = \int_{\answer{0}}^{\answer{1}}\int_{\answer{y^2}}^{\answer{y^{1/4}}} \d x \d y
0\le \answer[given]{y}\le \answer[given]{x}\le\pi/2
\]
\end{prompt}
\end{question}
Now we see that:
\begin{align*}
\int_0^{\pi/2}\int_y^{\pi/2} \frac{\sin(x)}{x} \d x \d y &= \int_{\answer[given]{0}}^{\answer[given]{\pi/2}}\int_{\answer[given]{0}}^{\answer[given]{x}} \frac{\sin(x)}{x} \d y \d x\\
&= \int_{\answer[given]{0}}^{\answer[given]{\pi/2}} \answer[given]{\sin(x)} \d x\\
&=\answer[given]{1}
\end{align*}
\end{explanation}
\end{example}

This author does not know how to solve the problem above without
changing the order of integration.









\section{Triple integrals and volume}
Expand Down Expand Up @@ -583,36 +643,6 @@ \section{Triple integrals and volume}
\end{prompt}
\end{question}

\section{When the integrand isn't one}

What if the integrand isn't $1$? Computationally, you just do what you
did before, but you have an additional antiderivative to
compute. However, sometimes the nontrivial region can make a difficult antiderivative quite ease. Let's see one more example.

\begin{example}
Compute:
\[
\int_0^{\pi/2}\int_y^{\pi/2} \frac{\sin(x)}{x} \d x \d y
\]
\begin{explanation}
Here you don't stand a chance if you try to antidifferentiate with
respect to $x$. So the trick is to immediately swap the order of
antidifferentation. Starting by writing absolute bounds for $x$
and $y$:
\[
0\le \answer[given]{y}\le \answer[given]{x}\le\pi/2
\]
Now we see that:
\begin{align*}
\int_0^{\pi/2}\int_y^{\pi/2} \frac{\sin(x)}{x} \d x \d y &= \int_{\answer[given]{0}}^{\answer[given]{\pi/2}}\int_{\answer[given]{0}}^{\answer[given]{x}} \frac{\sin(x)}{x} \d y \d x\\
&= \int_{\answer[given]{0}}^{\answer[given]{\pi/2}} \answer[given]{\sin(x)} \d x\\
&=\answer[given]{1}
\end{align*}
\end{explanation}
\end{example}


You may be wondering, what do multiple integrals mean when the
integrand is not $1$? Read on!

\end{document}
Original file line number Diff line number Diff line change
Expand Up @@ -11,5 +11,6 @@ \part{Integrals with trivial integrands}
\practice{setup2D0.tex}
\practice{setup2D1.tex}
\practice{setup2D2.tex}
\practice{impossible1.tex}
\practice{setup3D1.tex}
\end{document}
23 changes: 23 additions & 0 deletions multipleIntegrals/exercisesNontrivialRegions/impossible1.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
\documentclass{ximera}

\input{../../preamble.tex}

\author{Bart Snapp}

\outcome{Use iterated integrals to compute multiple integrals.}
\outcome{Apply Fubini's Theorem.}

\begin{document}
\begin{exercise}
Compute:
\[
\int_0^{\sqrt{\pi/2}}\int_y^{\sqrt{\pi/2} \cos(x^2) \d x \d y}
\begin{prompt}
= \answer{1/2}
\end{prompt}
\]
\begin{hint}
Change the order of integration.
\end{hint}
\end{exercise}
\end{document}

0 comments on commit 2da4247

Please sign in to comment.