Skip to content

Commit

Permalink
fixed various typos in the exercises
Browse files Browse the repository at this point in the history
  • Loading branch information
NDMathHo committed Oct 29, 2018
1 parent 511eb95 commit 61ed05a
Show file tree
Hide file tree
Showing 5 changed files with 51 additions and 25 deletions.
14 changes: 6 additions & 8 deletions integralsOfPolarFunctions/exercises/area4.tex
Expand Up @@ -2,7 +2,7 @@

\input{../../preamble.tex}

\author{Jason Miller}
\author{Jason Miller and Jim Talamo}
\license{Creative Commons 3.0 By-bC}


Expand Down Expand Up @@ -39,7 +39,7 @@
\end{tikzpicture}
\end{image}

We want to set up an integral that expresses the area of the shaded region $S$ that lies inside the curve $r=1+\cos(3\theta)$ but outside of the circle $r=1$ in the 1st quadrant.
We want to set up an integral that expresses the area of the shaded region $S$ that lies inside the curve $r=2\sin(3\theta)$ but outside of the circle $r=1$ in the 1st quadrant.



Expand All @@ -48,7 +48,7 @@
The area of the region $S$ is

\[
\int_{\answer{\frac{\pi}{18}}}^{\answer{ \frac{5\pi}{18} } } \answer{ \frac{1}{2}((2\cos(3\theta))^2-1) } \d \theta=\answer{ \frac{2\pi-3\sqrt{3}}{18}}
\int_{\answer{\pi/18}}^{\answer{ 5\pi/18 } } \answer{ \frac{1}{2}((4\sin(3\theta))^2-1) } \d \theta=\answer{ \frac{2\pi-3\sqrt{3}}{18}}
\]


Expand Down Expand Up @@ -157,7 +157,7 @@

Understanding how $r=1$ is traced out is the simplest. It is traced out in the standard fashion as $\theta$ varies. That is, for each value of $\theta$, the associated point on the curve is $(1, \theta)$ in polar coordinates.

Let's graph $r=2\cos(3\theta)$ on $r$ and $\theta$ axes.
Let's graph $r=2\sin(3\theta)$ on $r$ and $\theta$ axes.

\begin{image}
\begin{tikzpicture}
Expand All @@ -183,13 +183,11 @@

As $\theta$ goes from $0$ to $\frac{\pi}{3}$ we see that $r$ increase from $0$ to $2$ and then decreases from $2$ back down to $0$. This corresponds to the petal in the 1st quadrant.

But we don't want the entire petal.So we need to find for which $\theta$ values the $r$ values of the two curves coincide.
But we don't want the entire petal. So we need to find for which $\theta$ values the $r$ values of the two curves coincide.

We set $r=2\sin(3\theta)$ and $r=1$ equal.

Solving $2\sin(3\theta)=1$ for $\theta$ we get $\theta=\answer{\frac{\pi}{18}}$ and $\theta=\answer{\frac{5\pi}{18}}$ (list the $\theta$ values from smallest to largest and remember to use $\theta$ values from $[0, \pi)$).


Set $2\sin(3\theta)=1$. Note that $\sin(\cdot) = 0$ when $(\cdot) = \frac{\pi}{2},\frac{5\pi}{2}, \ldots$ (meaning that we have to set the expression \emph{inside} the sine function equal to those values. Doing this gives us that $3 \theta = \frac{\pi}{2},\frac{5\pi}{2}, \ldots$, so $\theta=\answer{\frac{\pi}{18}}$ and $\theta=\answer{\frac{5\pi}{18}}$ (list the $\theta$ values from smaller to larger.


In order to evaluate the integral, recall the trig identity $\sin^2(\theta)=\frac{1-\cos(2\theta)}{2}$.
Expand Down
44 changes: 35 additions & 9 deletions integralsOfPolarFunctions/exercises/area6.tex
Expand Up @@ -2,7 +2,7 @@

\input{../../preamble.tex}

\author{Jason Miller}
\author{Jason Miller and Jim Talamo}
\license{Creative Commons 3.0 By-bC}


Expand All @@ -28,10 +28,10 @@
every axis y label/.style={at=(current axis.above origin),anchor=south},
every axis x label/.style={at=(current axis.right of origin),anchor=west},axis on top
]
\addplot[data cs=polar, very thick, mark=none, fill=fill3, domain=0:60, samples=180, smooth] (x, {1+cos(x)}) -- (axis cs:0,0)[penColor4!50];
\addplot[data cs=polar, very thick, mark=none, fill=fill3, domain=-90:-60, samples=180, smooth] (x, {3*cos(x)}) -- (axis cs:0,0)[penColor4!50];
\addplot[data cs=polar, very thick, mark=none, fill=fill3, domain=-60:0, samples=180, smooth] (x, {1+cos(x)}) -- (axis cs:0,0)[penColor4!50];
\addplot [data cs=polar, very thick, mark=none,fill=penColor4!50,domain=60:90,samples=180,smooth] (x, {3*cos(x)});
\addplot[data cs=polar, very thick, mark=none, fill=fill3, domain=0:60, samples=180, smooth] (x, {1+cos(x)}) -- (axis cs:0,0)[green];
\addplot[data cs=polar, very thick, mark=none, fill=fill3, domain=-90:-60, samples=180, smooth] (x, {3*cos(x)}) -- (axis cs:0,0)[green];
\addplot[data cs=polar, very thick, mark=none, fill=fill3, domain=-60:0, samples=180, smooth] (x, {1+cos(x)}) -- (axis cs:0,0)[green];
\addplot [data cs=polar, very thick, mark=none,fill=green,domain=60:90,samples=180,smooth] (x, {3*cos(x)});
\addplot[data cs=polar,penColor2,domain=0:360,samples=360,smooth, thick] (x,{1+cos(x)}) ;
\addplot[data cs=polar, penColor, domain=0:360, samples=360, smooth, thick] (x, {3*cos(x)});
\end{axis}
Expand Down Expand Up @@ -61,7 +61,7 @@


\[
\int_{\answer{0}}^{\answer{ \frac{\pi}{3} } } \answer{ \frac{1}{2}(1+\cos(\theta))^2 } \d \theta + \int_{\answer{\frac{\pi}{3}}}^{\answer{\frac{\pi}{2}}} \answer{ \frac{1}{2} (3\cos(\theta))^2 } \d \theta
\int_{0}^{\answer{ \frac{\pi}{3} } } \answer{ \frac{1}{2}(1+\cos(\theta))^2 } \d \theta + \int_{\answer{\frac{\pi}{3}}}^{\answer{\frac{\pi}{2}}} \answer{ \frac{1}{2} (3\cos(\theta))^2 } \d \theta
\]

The area of the entire shaded region is obtained by multiplying these
Expand Down Expand Up @@ -170,11 +170,37 @@
\end{image}


Suppose we take a ray $\theta=\theta_{1}$ betwen $0$ and $\\frac{\pi}{3}$. We see where such an arbitary ray hits the boundary of our region. So we see that $r_{outer}=1+\cos(\theta)$ ( the blue curve) and $r_{inner}=0$.

Suppose we take a ray $\theta=\theta_{1}$ between $0$ and $\frac{\pi}{3}$. We see where such an arbitrary ray hits the boundary of our region. So we see that $r_{outer}=1+\cos(\theta)$ ( the blue curve) and $r_{inner}=0$.

However once we move past $\theta=\frac{\pi}{3}$, the outer radius changes. That is, $r_{outer}=3\cos(\theta)$ (the red curve) while $r_{inner}=0$.

We can summarize in the following picture.

\begin{image}
\begin{tikzpicture}
\begin{axis}[
xmin=-1.2,
xmax=3.5,
ymin=-2,
ymax=2,
axis lines=center,
xlabel=$x$,
ylabel=$y$,
every axis y label/.style={at=(current axis.above origin),anchor=south},
every axis x label/.style={at=(current axis.right of origin),anchor=west},axis on top
]
\addplot[data cs=polar, very thick, mark=none, fill=fill3, domain=0:60, samples=180, smooth] (x, {1+cos(x)}) -- (axis cs:0,0)[penColor2!50];
\addplot [data cs=polar, very thick, mark=none,fill=penColor!50,domain=60:90,samples=180,smooth] (x, {3*cos(x)});
\addplot[data cs=polar,penColor2,domain=0:360,samples=360,smooth, thick] (x,{1+cos(x)}) ;
\addplot[data cs=polar, penColor, domain=0:360, samples=360, smooth, thick] (x, {3*cos(x)});
\end{axis}
\end{tikzpicture}
\end{image}

The red area is given by $\int_{0}^{\answer{\pi/3}} \frac{1}{2}\left(\answer{1+\cos(\theta)}\right)^2 \d \theta$ and the blue area is given by
$\int_{\answer{\pi/3}}^{\answer{\pi/2}} \frac{1}{2}\left(\answer{3\cos(\theta)}\right)^2 \d \theta$





Expand Down Expand Up @@ -224,7 +250,7 @@


\[
\int_{\answer{\frac{\pi}{3}}}^{\answer{ \frac{\pi}{2} } } \answer{ \frac{1}{2}((1+\cos(\theta))^2 -(3\cos(\theta))^2 } \d \theta + \int_{\answer{\frac{\pi}{2}}}^{\answer{\pi}} \answer{ \frac{1}{2} ( (3\cos(\theta))^2 } \d \theta
\int_{\answer{\frac{\pi}{3}}}^{\answer{ \frac{\pi}{2} } } \answer{ \frac{1}{2}(1+\cos(\theta))^2 -(3\cos(\theta))^2 } \d \theta + \int_{\answer{\frac{\pi}{2}}}^{\answer{\pi}} \answer{ \frac{1}{2} ( (3\cos(\theta))^2 } \d \theta
\]


Expand Down
14 changes: 8 additions & 6 deletions introductionToPolarCoordinates/exercises/polarToCartesian1.tex
Expand Up @@ -8,9 +8,9 @@
\begin{document}
\begin{exercise}

To express the polar curve $r= 4\sin(\theta)$ using Cartesian coordinates:
To express the polar curve $r= 4\sin(\theta)$ using Cartesian coordinates, do the following.

First, not that the curve is a:
First, note that the curve is a:

\begin{multipleChoice}
\choice{line}
Expand All @@ -19,15 +19,17 @@
\choice{none of these}
\end{multipleChoice}

(go to desmos.com and graph the curve if you aren't sure).

We can thus write the curve in the form:

\begin{align*}
(x-h)^2+(y-k)^2&=r^2\\
\left(x- \answer{0}\right)^2+\left(y-\answer{2 }\right)^2 = \answer{4 }
\left(x- \answer{0}\right)^2+\left(y-\answer{2 }\right)^2 = \answer{4 }.
\end{align*}

\begin{hint}
Start by using:
Start by using

\begin{multipleChoice}
\choice[correct]{$\cos(\theta) =\frac{x}{r}, \sin(\theta) = \frac{y}{r}$}
Expand All @@ -42,10 +44,10 @@
\end{align*}

\begin{question}
We thus can multiply both sides by $r$ to obtain:
We thus can multiply both sides by $r$ to obtain

\[
r^2 =4y
r^2 =4y.
\]
Now, powers of $r$ are easy to convert by using the fact that $r^2 = x^2+y^2$. Thus:

Expand Down
2 changes: 1 addition & 1 deletion review/refreshFactorials/exponents.tex
Expand Up @@ -47,7 +47,7 @@
a_{k+1} = 5\left(\frac{1}{2}\right)^{2(k+1)} = 5\left(\frac{1}{2}\right)^{2k+2}.
\]

Thus, we can write out the desired ration and simplify.
Thus, we can write out the desired ratio and simplify.

\[
\frac{a_{k+1}}{a_k} = \frac{5\left(\frac{1}{2}\right)^{2k+2}}{5\left(\frac{1}{2}\right)^{2k}}= \frac{\cancel{5\left(\frac{1}{2}\right)^{2k}}\cdot \left(\frac{1}{2}\right)^2}{\cancel{5\left(\frac{1}{2}\right)^{2k}}} = \frac{1}{4}
Expand Down
2 changes: 1 addition & 1 deletion review/refreshFactorials/puttingItTogether.tex
Expand Up @@ -15,7 +15,7 @@

Now, let's try to simplify some expressions that involve polynomials, exponentials, and factorials.

Suppose that $a_k = \frac{k^2 \cdot 3^k}{k!}$. Simplify $\frac{a_{n+1}}{a_n}$, then find $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.
Suppose that $a_k = \frac{5^{n^2}}{n!}$ (note that the $n^2$ is in the exponent). Simplify $\frac{a_{n+1}}{a_n}$, then find $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

\begin{align*}
\frac{a_{n+1}}{a_n} = \answer{ \frac{5^{2n+1}}{n+1}} \\
Expand Down

0 comments on commit 61ed05a

Please sign in to comment.