Skip to content

Commit

Permalink
Merge branch 'master' of github.com:mooculus/calculus
Browse files Browse the repository at this point in the history
  • Loading branch information
bartsnapp committed Nov 8, 2018
2 parents 5336f3b + ce6aff7 commit 99b8d5c
Show file tree
Hide file tree
Showing 12 changed files with 147 additions and 77 deletions.
5 changes: 3 additions & 2 deletions calculusAndVectorValuedFunctions/exercises/exerciseList.tex
Expand Up @@ -6,6 +6,8 @@
\begin{document}

\part{Calulus and vector-valued functions}
\practice{domainAndCont1.tex}
\practice{tangentLinesTwoWays}%new
\practice{velocityVersusAcceleration.tex}
\practice{derivAndTan2.tex}
\practice{interpretGraph1} %new
Expand All @@ -29,8 +31,7 @@ \part{Calulus and vector-valued functions}
\practice{derivAndTan1.tex} %new
\practice{positionVersusVelocity.tex}
\practice{vectorValuedLimitTrig.tex}
\practice{domainAndCont1.tex}
\practice{conceptualQuestionsDynamics}
\practice{conceptualQuestionsDynamics}%new



Expand Down
8 changes: 3 additions & 5 deletions calculusAndVectorValuedFunctions/exercises/exerciseListE.tex
Expand Up @@ -6,20 +6,18 @@
\begin{document}

\part{Calculus and vector-valued functions}
\practice{domainAndCont1.tex}
\practice{vectorValuedLimitRational.ditto.tex}


\practice{tangentLinesTwoWays}
\practice{velocityVersusAcceleration.tex}
\practice{derivAndTan2.tex}
\practice{domainAndCont1.tex}
\practice{deriv1.tex}
\practice{sumRule.tex}
\practice{linearCombination.tex}
\practice{productRule.tex}
\practice{deriv2.tex}
\practice{antiderivative2.tex}
\practice{interpretGraph1}

\practice{velocityVersusAccelerationCircle.tex}
\practice{vectorValuedLimitPolynomial.ditto.tex}
\practice{domainAndCont2.tex}
Expand All @@ -31,6 +29,6 @@ \part{Calculus and vector-valued functions}
\practice{interpretGraph2}
\practice{conceptualQuestionsDynamics}


%Need curve that does not intersect a surface but tangent line that does

\end{document}
62 changes: 62 additions & 0 deletions calculusAndVectorValuedFunctions/exercises/tangentLinesTwoWays.tex
@@ -0,0 +1,62 @@
\documentclass{ximera}

\input{../../preamble.tex}

\outcome{Compute the derivative of a vector-valued function.}

\author{Jim Talamo}

\begin{document}
\begin{exercise}

Consider the curve $\mathcal{C} = \left\{(x,y) \in \R^2 ~ \bigg| ~ y=2x^2-7\right\}$ .

Find a Cartesian representation of the tangent line at $x=2$. Express you final answer in the form $y=mx+b$.

\[
y= \answer{8x-15}
\]

\begin{exercise}
Now, require that $x(t) =t$.

A parametric equation that traces out $\mathcal{C}$ is given by

\[
\vec{r}(t) = \vector{\answer{t},\answer{2t^2-7}}.
\]

A parameterization of the tangent line to the curve where $x=2$ is

\[
\vec{l}(t)=\vector{\answer{t+2},\answer{8t+1}}.
\]

\begin{hint}
The curve passes through $x=2$ when $t=\answer{2}$.

\begin{itemize}
\item A vector $\vec{v}$ parallel to the tangent line at $x=2$ is found by evaluating \wordChoice{\choice{$\vec{r}(t)$}\choice[correct]{$\vec{r}'(t)$}} when $t=\answer{2}$.
\item A point $P_0$ on the tangent line is found by evaluating \wordChoice{\choice[correct]{$\vec{r}(t)$}\choice{$\vec{r}'(t)$}} when $t=\answer{2}$.
\end{itemize}

A parametric description of the tangent line can be found from

\[\vec{l}(t) = \vec{v}t+\vec{P}_0\]

\end{hint}

\begin{feedback}[correct]
Do the answers to Part I and Part II describe the same line? Intuitively, they should since the tangent line at the point on the curve where $x=2$ should not depend on how we choose to describe the curve.

To check this, we can determine if the set of parametric equations $x(t)=t+2$ and $y(t)=8t+1$ satisfy the equation $y=8x-15$ from the first part.

\[
8[x(t)]-15 = 8 [t+2] -15 = 8t+16-15 = 8t+1=y(t).
\]

Thus, the two equations describe the same line.
\end{feedback}
\end{exercise}
\end{exercise}
\end{document}
2 changes: 1 addition & 1 deletion commonCoordinates/digInSphericalCoordinates.tex
Expand Up @@ -18,7 +18,7 @@

\begin{definition}
An ordered triple consisting of a radius, an angle, and a height
$(\rho,\varphi,\theta)$ can be graphed as
$(\rho,\theta, \varphi)$ can be graphed as
\begin{align*}
x &= \rho\cdot \cos(\theta)\sin(\varphi)\\
y &= \rho\cdot \sin(\theta)\sin(\varphi)\\
Expand Down
Expand Up @@ -14,28 +14,28 @@
Find a vector $\vec{w}$ of magnitude 3 that is orthogonal to both $\vec{u}$ and $\vec{v}$.

\[
\vec{w} = \vector{ \answer{\frac{2}{\sqrt{5}}},\answer{\frac{-4}{\sqrt{5}}}, \answer{\frac{5}{\sqrt{5}}} }
\vec{w} = \vector{ \answer{\frac{-2}{\sqrt{5}}},\answer{\frac{4}{\sqrt{5}}}, \answer{\frac{5}{\sqrt{5}}} }
\]


\begin{hint}
To find a vector orthognal to both $\vec{u}$ and $\vec{v}$, we can:
To find a vector orthogonal to both $\vec{u}$ and $\vec{v}$, we can:

\begin{multipleChoice}
\choice{Compute $\vec{u} \dotp \vec{v}$.}
\choice[correct]{Compute $\vec{u} \cross \vec{v}$.}
\end{multipleChoice}

We find:
We find that

\[
\vec{u} \cross \vec{v} = \vector{\answer{2},\answer{-4},\answer{5}}
\vec{u} \cross \vec{v} = \vector{\answer{-2},\answer{4},\answer{5}}.
\]

To find a vector of magnitude 5 in this direction:
To find a vector of magnitude 3 in this direction:

\begin{multipleChoice}
\choice{Multiply the above vector by 5.}
\choice{Multiply the above vector by 3.}
\choice[correct]{Compute the magnitude and scale the vector accordingly.}
\end{multipleChoice}

Expand All @@ -44,18 +44,18 @@
\[
|\vec{u} \cross \vec{v} | = \answer{\sqrt{45}}
\]
We can make the vector $\vec{w}$ by finding a unit vector $\hat{w}$ in the appropriate direction:
We can make the vector $\vec{w}$ by finding a unit vector $\uvec{w}$ in the appropriate direction.

\[
\hat{w} = \frac{\vec{u} \cross \vec{v}}{|\vec{u} \cross{v}|} = \vector{ \answer{\frac{2}{\sqrt{45}}},\answer{\frac{-4}{\sqrt{45}}}, \answer{\frac{5}{\sqrt{45}}} }
\uvec{w} = \frac{\vec{u} \cross \vec{v}}{|\vec{u} \cross{v}|} = \vector{ \answer{\frac{-2}{\sqrt{45}}},\answer{\frac{4}{\sqrt{45}}}, \answer{\frac{5}{\sqrt{45}}} }
\]

Recall that if $a>0$ is a scalar, the length of $a\vec{u}$ is $a$ times the length of $\vec{u}$, so a vector $\vec{w}$ of magnitude 3 in the direction of $\hat{w}$ is $\answer{3}\hat{w}$.
Recall that if $a>0$ is a scalar, the length of $a\vec{u}$ is $a$ times the length of $\vec{u}$, so a vector $\vec{w}$ of magnitude 3 in the direction of $\uvec{w}$ is $\answer{3}\uvec{w}$.
\end{hint}

%%%%%%%%%
\begin{exercise}
Find a vector $\vec{P}$ parallel to $\vec{u}$ and a vector $\vec{N}$ orthogonal to $\vec{v}$ so $\vec{u} = \vec{P} +\vec{N}$.
Find a vector $\vec{P}$ parallel to $\vec{v}$ and a vector $\vec{N}$ orthogonal to $\vec{v}$ so $\vec{u} = \vec{P} +\vec{N}$.

\begin{align*}
\vec{P} = \vector{\answer{4},\answer{2}, \answer{0}} \\
Expand All @@ -71,6 +71,12 @@
\end{multipleChoice}
\end{hint}

\end{exercise}
\begin{feedback}[correct] We can check that the vectors $\vec{P}$ and $\vec{N}$ have the desired directions as follows.
\begin{itemize}
\item Note that $\vec{P}$ is parallel to $\vec{v}$ because it is a scalar multiple of $\vec{v}$.
\item We can check that $\vec{N}$ is orthogonal to $\vec{v}$ by noting that $\vec{v} \dotp \vec{N} = \vector{2,1,0} \dotp \vector{1,-2,-2} = 2-2+0=0.$
\end{itemize}
\end{feedback}
\end{exercise}
\end{exercise}
\end{document}
46 changes: 23 additions & 23 deletions crossProducts/exercises/jVectorOrScalar1.tex
Expand Up @@ -10,14 +10,14 @@

\begin{document}
\begin{exercise}
Suppose that $\vec u $ and $\vec v $ are nonzero three dimensional vectors and $\cross$ denotes the cross product and $\dotp$ denotes the dot product.
Suppose that $\vec u $ and $\vec v $ are nonzero three dimensional vectors. Let $\cross$ denote the cross product, $\dotp$ denote the dot product, and $\cdot$ denote scalar multiplication.

The quantity $(\vec u \dotp \vec v)+ |\vec v|$ is:

\begin{multipleChoice}
\choice {A Scalar}
\choice{A Vector}
\choice[correct] {Undefined}
\choice {a scalar.}
\choice{a vector.}
\choice[correct] {undefined.}
\end{multipleChoice}


Expand All @@ -26,59 +26,59 @@
\end{hint}

\begin{hint}
Dot products of vectors is a scalar, and the Cross product of vectors is a vector.
Dot products of vectors is a scalar, and the cross product of vectors is a vector.
\end{hint}



The quantity $(proj_{\vec v} \vec u)\cross \vec v$ is:
The quantity $(\proj_{\vec v} \vec u)\cross \vec v$ is:

\begin{multipleChoice}
\choice{A Scalar}
\choice[correct] {A Vector}
\choice{Undefined}
\choice{a scalar.}
\choice[correct] {a vector.}
\choice{undefined.}
\end{multipleChoice}


\begin{hint}
Multilplying a vector by a scalar is defined. However, adding a vector and a scalar is undefined.
Multiplying a vector by a scalar is defined. However, adding a vector and a scalar is undefined.
\end{hint}


The quantity $\vec u \cdot \vec v$ is:

\begin{multipleChoice}
\choice[correct] {A Scalar}
\choice{A Vector}
\choice{Undefined}
\choice[correct] {a scalar.}
\choice{a vector.}
\choice{undefined.}
\end{multipleChoice}

\begin{hint}
The dot and cross products are defined only for \emph{vectors}.
\end{hint}
\begin{hint}
Dot products of vectors is a scalar, and the Cross product of vectors is a vector.
Dot products of vectors is a scalar, and the cross product of vectors is a vector.
\end{hint}


The quantity $(\vec u + \vec v) \vec v$ is:
The quantity $(\vec u + \vec v) \cdot \vec v$ is:
\begin{multipleChoice}
\choice{A Scalar}
\choice{A Vector}
\choice[correct] {Undefined}
\choice{a scalar.}
\choice{a vector.}
\choice[correct] {undefined.}
\end{multipleChoice}

\begin{hint}
Multilplying a vector by a scalar is defined. However, adding a vector and a scalar is undefined.
Multiplying a vector by a scalar is defined. However, adding a vector and a scalar is undefined.
\end{hint}


The quantity $proj_{\vec v} \vec u$ is:
The quantity $\proj_{\vec v} \vec u$ is:

\begin{multipleChoice}
\choice{A Scalar}
\choice[correct]{A Vector}
\choice {Undefined}
\choice{a scalar.}
\choice[correct]{a vector.}
\choice {undefined.}
\end{multipleChoice}


Expand Down
38 changes: 19 additions & 19 deletions crossProducts/exercises/jVectorOrScalar2.tex
Expand Up @@ -10,47 +10,47 @@

\begin{document}
\begin{exercise}
Suppose that $\vec u $ and $\vec v $ are nonzero three dimensional vectors and $\cross$ denotes the cross product and $\dotp$ denotes the dot product.
Suppose that $\vec u $ and $\vec v $ are nonzero three dimensional vectors. Let $\cross$ denote the cross product, $\dotp$ denote the dot product, and $\cdot$ denote scalar multiplication.

The quantity $(\vec u \cdot \vec v) \times \vec u$ is:
The quantity $(\vec u \cdot \vec v) \times \vec u$ is

\begin{multipleChoice}
\choice{A Scalar}
\choice{A Vector}
\choice[correct] {Undefined}
\choice{a scalar.}
\choice{a vector.}
\choice[correct] {undefined.}
\end{multipleChoice}



The quantity $(\vec u \times \vec v)\times \vec v$ is:

\begin{multipleChoice}
\choice{A Scalar}
\choice[correct]{A Vector}
\choice {Undefined}
\choice{a scalar.}
\choice[correct]{a vector.}
\choice {undefined.}
\end{multipleChoice}

The quantity $\frac {\vec u} {\vec v}$ is:

\begin{multipleChoice}
\choice{A Scalar}
\choice{A Vector}
\choice[correct] {Undefined}
\choice{a Scalar.}
\choice{a Vector.}
\choice[correct] {Undefined.}
\end{multipleChoice}

The quantity $(scal_{\vec u} \vec v$ is:
The quantity $(\scal_{\vec u} \vec v) \cdot \vec{v}$ is:
\begin{multipleChoice}
\choice{A Scalar}
\choice [correct] {A Vector}
\choice{Undefined}
\choice{a scalar.}
\choice [correct] {a vector.}
\choice{undefined.}
\end{multipleChoice}

The quantity $(proj_{\vec v} \vec u)\cdot \vec v$ is:
The quantity $(\proj_{\vec v} \vec u)\cdot \vec v$ is:

\begin{multipleChoice}
\choice [correct]{A Scalar}
\choice{A Vector}
\choice {Undefined}
\choice [correct]{a scalar.}
\choice{a vector.}
\choice {undefined.}
\end{multipleChoice}


Expand Down
2 changes: 1 addition & 1 deletion definiteIntegral/digInTheDefiniteIntegral.tex
Expand Up @@ -476,7 +476,7 @@
\item $\int_a^c f(x)\d x + \int_c^b f(x)\d x = \int_a^b f(x)\d x$
\item $\int_a^bf(x)\d x = -\int_b^a f(x)\d x$
\item $\int_a^bk\cdot f(x)\d x = k\cdot\int_a^bf(x)\d x$
\item $\int_a^b f(x)\pm g(x)\d x = \int_a^bf(x)\d x \pm \int_a^bg(x)\d x$
\item $\int_a^b \left(f(x)\pm g(x)\right)\d x = \int_a^bf(x)\d x \pm \int_a^bg(x)\d x$
\end{enumerate}
\begin{explanation}
We will address each property in turn:
Expand Down
8 changes: 4 additions & 4 deletions integralsOfPolarFunctions/exercises/area2.tex
Expand Up @@ -12,7 +12,7 @@
\begin{exercise}


Consider the polar curve $r=\cos(3\theta)$. The graph is shown below:
Consider the polar curve $r=\cos(3\theta)$. The graph is shown below.



Expand Down Expand Up @@ -42,11 +42,11 @@
The area of the region $S$ is

\[
\int_{\answer{\frac{\pi}{6}}}^{\answer{ \frac{\pi}{3} } } \answer{ \frac{1}{2}(\cos(3\theta))^2 } \d \theta=\answer{ \frac{\pi}{24}}
\int_{\answer{\frac{\pi}{6}}}^{\answer{ \frac{\pi}{2} } } \answer{ \frac{1}{2}(\cos(3\theta))^2 } \d \theta=\answer{ \frac{\pi}{12}}
\]


The entire area enclosed by the curve (all three petals) is $\answer{ \frac{\pi}{8}}$.
The entire area enclosed by the curve (all three petals) is $\answer{ \frac{\pi}{4}}$.


\begin{hint}
Expand Down Expand Up @@ -132,7 +132,7 @@
That means as $\theta$ varies from $\frac{\pi}{6}$ to $\frac{\pi}{3}$, we can think of $r$ being positive instead and $\theta$ varying over the interval $\pi + \frac{\pi}{6}$ to $\pi + \frac{\pi}{3}$.


In order to evaluate the integral, recall the trig identity $sin^2(\theta)=\frac{1-\cos(2\theta)}{2}$.
In order to evaluate the integral, recall the trig identity $\sin^2(\theta)=\frac{1-\cos(2\theta)}{2}$.



Expand Down

0 comments on commit 99b8d5c

Please sign in to comment.