Code and data for IJCAI-17 paper Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
results
run
run_others
src
LICENSE
README.md
install.sh
run_cn3l.sh
run_wk3l.sh
train_models.sh

README.md

Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment

This repository includes the code of MTransE var4 (see paper), links to the data sets, and pretrained models.

A more recent tensorflow implementation is available at this repository: https://github.com/muhaochen/MTransE-tf (recommended), which takes in entity-level seed alignment.

Install

Make sure your local environment has the following installed:

Python >= 2.7.6
pip

Install the dependents using:

./install.sh

Run the experiments

Please first download the data sets:

http://yellowstone.cs.ucla.edu/~muhao/MTransE/data.zip

and pretrained models

http://yellowstone.cs.ucla.edu/~muhao/MTransE/models.zip

Unpack these two folders to the local clone of the repository.

To run the experiments on WK3l (wikipedia graphs), use:

./run_wk3l.sh

To run the experiments on CN3l (conceptNet), use:

./run_cn3l.sh

You may also train your own models on these two data sets using:

./train_models.sh

Reference

Please refer to our paper. Muhao Chen, Yingtao Tian, Mohan Yang, Carlo Zaniolo. Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 2017

@inproceedings{chen2017multigraph,
    title={Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment},
    author={Chen, Muhao and Tian, Yingtao and Yang, Mohan and Zaniolo, Carlo},
    booktitle={Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI)},
    year={2017}
}

Links

The following links point to some recent follow-ups of this work.

Sun, Zequn, et al. Cross-lingual entity alignment via joint attribute-preserving embedding. ISWC, 2017.
Zhu, Hao, et al. Iterative entity alignment via joint knowledge embeddings., IJCAI, 2017.
Yeo, Jinyoung, et al. Machine-Translated Knowledge Transfer for Commonsense Causal Reasoning. AAAI. 2018.
Chen, Muhao, et al. Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment., IJCAI, 2018.
Sun, Zequn, et al. Bootstrapping Entity Alignment with Knowledge Graph Embedding. IJCAI. 2018.
Otani, Naoki, et al. Cross-lingual Knowledge Projection Using Machine Translation and Target-side Knowledge Base Completion. COLING, 2018.
Wang, Zhichun, et al. Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. EMNLP, 2018.
Weakly-supervised Knowledge Graph Alignment with Adversarial Learning