Specularity detection and removal for endoscopic images/videos.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.



This repository contains image processing pipe-line for specularity removal for endoscopic images/videos. A method for extracting specular map was adapted and modified from the study [1, 2, 3]. Unfortunately, the data set used in study [1] is not available to test the repository, yet Hamlyn endoscopic videos were processed to implement detection and removal methods.

    # Detection and removal based on study [1].
    # Note that notations (r_, m_, s_) are adapted from the paper.
    import cv2
    import numpy as np
    import specularity as spc  

    impath = 'figs/original.png'
    img = cv2.imread(impath)
    gray_img = spc.derive_graym(impath)

    r_img = m_img = np.array(gray_img)

    rimg = spc.derive_m(img, r_img)
    s_img = spc.derive_saturation(img, rimg)
    spec_mask = spc.check_pixel_specularity(rimg, s_img)
    enlarged_spec = spc.enlarge_specularity(spec_mask)
    # use opencv's inpaint methods to remove specularity
    radius = 12 
    telea = cv2.inpaint(img, enlarged_spec, radius, cv2.INPAINT_TELEA)
    ns = cv2.inpaint(img, enlarged_spec, radius, cv2.INPAINT_NS)

Below images illustrate the processing steps to detect and enlarge the specular region from a given endoscopic image. Note that this image obtained from the study [1]. Processing steps illustration Obtained results via performing Telea and Navier-Stokes methods. It should be mentioned that a different algorithm was performed by the study in [1]. Processing steps illustration

[1] S. Tchoulack, J. M. Pierre Langlois and F. Cheriet, "A video stream processor for real-time detection and correction of specular reflections in endoscopic images," Circuits and Systems and TAISA Conference, 2008. NEWCAS-TAISA 2008. 2008 Joint 6th International IEEE Northeast Workshop on, Montreal, QC, 2008, pp. 49-52.
[2] Bertalmio, Marcelo, Andrea L. Bertozzi, and Guillermo Sapiro. "Navier-stokes, fluid dynamics, and image and video inpainting." In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I-355. IEEE, 2001.
[3] Telea, Alexandru. "An image inpainting technique based on the fast marching method." Journal of graphics tools 9.1 (2004): 23-34.