Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ReadMe.md

Puzzle RLE

Project description

Puzzle RLE (Reinforcement Learning Environment) is an environment for learning the puzzle gameplay from the mobile game Puzzle and Dragons (Gungho Online Entertainment, Tokyo, Japan). The environment is a re-implemntation based on orb-matching and clearing mechanics encountered during normal gameplay.

The environment supports the following:

  • pygame environment visualization engine
  • 5 Actions: select-orb, move left, up, right, down
  • Baseline random agent
  • OpenAI Baselines agents

Project Milestones & Plans

  • Implement basic movement, clearing, skyfall and cascade mechanics ( ✔️ Sep 2, '17)
  • Implement a random agent and run experiments to generate baseline statistics ( ✔️ Sep 2, '17)
  • Implement Deep Q Network learning agent (✔️ Sep 9 '17 )
  • Abandon previous goal of implementing RL algorithms. Use openai baselines, and stable-baselines instead! (✔️ Sep '18)
  • Update environment to work with openai gym style with spaces, step(), ... etc. (✔️ Sep '18)
  • Update render-able environment via pygame (✔️ Oct '18)
  • Train a successful agent (in progress)
  • Update agent to take rendered pygame pixels
    • Represent selected orb on-screen
    • Represent environment timer on-screen
    • Move timer to work "real - time" : reset clock when orb is selected. End episode after timer.
    • Allow "unselect" option = "end episode now" <-- estimate that you've gotten the max reward for this episode

Tested OpenAI baseline agents

Agent tested-runing performance
DeepQ no bad
A2C no bad
HER no bad
PPO2 yes bad

During a long hiatus from this project there's been some developments in relational reinforcement learning (arxiv)[https://arxiv.org/pdf/1806.01830]. OpenAI's baselines implementations have been greatly improved and expanded.

Depends

References

Environment based on mobile game Puzzle & Dragons

Implementation of DQN algorithms were with reference to the original papers:

Very much credit to the series of blogposts and Jupyter notebooks by awjuliani on reinforement learning:

License

MIT license ? the free use with citation one.

About

RL environment

Resources

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.