Skip to content

Commit

Permalink
tangent bundles of spheres
Browse files Browse the repository at this point in the history
Formalising the hairy ball theorem from https://www.youtube.com/watch?v=9T9B9XBjVpk
  • Loading branch information
ncfavier committed Dec 21, 2023
1 parent 7f46946 commit 09a7c70
Showing 1 changed file with 221 additions and 0 deletions.
221 changes: 221 additions & 0 deletions src/TangentBundles.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
open import 1Lab.Path.Cartesian
open import 1Lab.Path.Reasoning
open import 1Lab.Prelude hiding (double-connection)

open import Data.Bool

open import Homotopy.Space.Suspension
open import Homotopy.Space.Sphere

open import Meta.Idiom

module TangentBundles where

{-
A work-in-progress formalisation of the first part of https://www.youtube.com/watch?v=9T9B9XBjVpk
by David Jaz Myers, Ulrik Buchholtz, Dan Christensen and Egbert Rijke, up until
the proof of the hairy ball theorem (except I don't have enough homotopy theory yet
to conclude that n-1 must be odd from flipΣⁿ ≡ id).
-}

id≃ : {ℓ} {A : Type ℓ} A ≃ A
id≃ = id , id-equiv

record Functorial (M : Effect) : Typeω where
private module M = Effect M
field
⦃ Map-Functorial ⦄ : Map M
map-id : {ℓ} {A : Type ℓ} map {M} {A = A} id ≡ id
map-∘
: {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
{f : B C} {g : A B}
map {M} (f ∘ g) ≡ map f ∘ map g

map-iso : {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
(e : A ≃ B) is-iso (Map-Functorial .map (Equiv.to e))
map-iso e .is-iso.inv = map (Equiv.from e)
map-iso e .is-iso.rinv mb =
map (Equiv.to e) (map (Equiv.from e) mb) ≡˘⟨ map-∘ $ₚ mb ⟩
map ⌜ Equiv.to e ∘ Equiv.from e ⌝ mb ≡⟨ ap! (funext (Equiv.ε e)) ⟩
map id mb ≡⟨ map-id $ₚ mb ⟩
mb ∎
map-iso e .is-iso.linv ma =
map (Equiv.from e) (map (Equiv.to e) ma) ≡˘⟨ map-∘ $ₚ ma ⟩
map ⌜ Equiv.from e ∘ Equiv.to e ⌝ ma ≡⟨ ap! (funext (Equiv.η e)) ⟩
map id ma ≡⟨ map-id $ₚ ma ⟩
ma ∎

map≃
: {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
(e : A ≃ B) M.₀ A ≃ M.₀ B
map≃ e = _ , is-iso→is-equiv (map-iso e)

open Functorial ⦃ ... ⦄

is-natural
: {M N : Effect} (let module M = Effect M; module N = Effect N) ⦃ _ : Map M ⦄ ⦃ _ : Map N ⦄
(f : {ℓ} {A : Type ℓ} M.₀ A N.₀ A) Typeω
is-natural f =
{ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {g : A B}
a map g (f a) ≡ f (map g a)

-- Operations on suspensions: functorial action, flipping

instance
Map-Susp : Map (eff Susp)
Map-Susp .Map.map f N = N
Map-Susp .Map.map f S = S
Map-Susp .Map.map f (merid a i) = merid (f a) i

Functorial-Susp : Functorial (eff Susp)
Functorial-Susp .Functorial.Map-Functorial = Map-Susp
Functorial-Susp .Functorial.map-id = funext $ Susp-elim _ refl refl λ _ _ refl
Functorial-Susp .Functorial.map-∘ = funext $ Susp-elim _ refl refl λ _ _ refl

flipΣ : {ℓ} {A : Type ℓ} Susp A Susp A
flipΣ N = S
flipΣ S = N
flipΣ (merid a i) = merid a (~ i)

flipΣ-involutive : {ℓ} {A : Type ℓ} (p : Susp A) flipΣ (flipΣ p) ≡ p
flipΣ-involutive = Susp-elim _ refl refl λ _ _ refl

flipΣ≃ : {ℓ} {A : Type ℓ} Susp A ≃ Susp A
flipΣ≃ = flipΣ , is-involutive→is-equiv flipΣ-involutive

flipΣ-natural : is-natural flipΣ
flipΣ-natural = Susp-elim _ refl refl λ _ _ refl

double-connection
: {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z)
Square p p q q
double-connection {y = y} p q i j = hcomp (∂ i ∨ ∂ j) λ where
k (k = i0) y
k (i = i0) p (j ∨ ~ k)
k (i = i1) q (j ∧ k)
k (j = i0) p (i ∨ ~ k)
k (j = i1) q (i ∧ k)

twist : {ℓ} {A : Type ℓ} {a b : A} {p q : a ≡ b} (α : p ≡ q)
PathP (λ i PathP (λ j α i j ≡ α j (~ i))
(λ k p (~ i ∧ k))
(λ k q (~ i ∨ ~ k)))
(λ j k p (j ∨ k))
(λ j k q (j ∧ ~ k))
twist α i j k = hcomp (∂ i ∨ ∂ j ∨ ∂ k) λ where
l (l = i0) α (I-interp k i j) (I-interp k j (~ i))
l (i = i0) α (~ l ∧ k ∧ j) (k ∨ j)
l (i = i1) α (l ∨ ~ k ∨ j) (~ k ∧ j)
l (j = i0) α (~ l ∧ ~ k ∧ i) (k ∧ ~ i)
l (j = i1) α (l ∨ k ∨ i) (~ k ∨ ~ i)
l (k = i0) α i j
l (k = i1) α j (~ i)

-- Flipping ΣΣA along the first axis is homotopic to flipping along the second axis,
-- by rotating 180°.
rotateΣ : {ℓ} {A : Type ℓ} map flipΣ ≡ flipΣ {A = Susp A}
rotateΣ = funext $ Susp-elim _ (merid N) (sym (merid S)) (
Susp-elim _ (flip₁ (double-connection _ _)) (double-connection _ _)
λ a i j k hcomp (∂ j ∨ ∂ k) λ where
l (l = i0) merid (merid a j) i
l (j = i0) merid N (I-interp l i k)
l (j = i1) merid S (I-interp l i (~ k))
l (k = i0) twist (λ i j merid (merid a i) j) (~ i) j (~ l)
l (k = i1) twist (λ i j merid (merid a i) j) j i l)

Susp-ua→
: {ℓ ℓ'} {A B : Type ℓ} {C : Type ℓ'}
{e : A ≃ B} {f : Susp A C} {g : Susp B C}
( sa f sa ≡ g (map (e .fst) sa))
PathP (λ i Susp (ua e i) C) f g
Susp-ua→ h i N = h N i
Susp-ua→ h i S = h S i
Susp-ua→ {g = g} h i (merid a j) = hcomp (∂ i ∨ ∂ j) λ where
k (k = i0) g (merid (unglue (∂ i) a) j)
k (i = i0) h (merid a j) (~ k)
k (i = i1) g (merid a j)
k (j = i0) h N (i ∨ ~ k)
k (j = i1) h S (i ∨ ~ k)

-- The tangent bundles of spheres

antipodeⁿ⁻¹ : (n : Nat) Sⁿ⁻¹ n ≃ Sⁿ⁻¹ n
antipodeⁿ⁻¹ zero = id≃
antipodeⁿ⁻¹ (suc n) = map≃ (antipodeⁿ⁻¹ n) ∙e flipΣ≃

Tⁿ⁻¹ : (n : Nat) Sⁿ⁻¹ n Type
θⁿ⁻¹ : (n : Nat) (p : Sⁿ⁻¹ n) Susp (Tⁿ⁻¹ n p) ≃ Sⁿ⁻¹ n

Tⁿ⁻¹ zero ()
Tⁿ⁻¹ (suc n) = Susp-elim _
(Sⁿ⁻¹ n)
(Sⁿ⁻¹ n)
λ p ua (θⁿ⁻¹ n p e⁻¹ ∙e flipΣ≃ ∙e θⁿ⁻¹ n p)

θⁿ⁻¹ zero ()
θⁿ⁻¹ (suc n) = Susp-elim _
id≃
flipΣ≃
λ p Σ-prop-pathp hlevel! $ Susp-ua→ λ s
let module θ = Equiv (θⁿ⁻¹ n p) in sym $
flipΣ (map (θ.to ∘ flipΣ ∘ θ.from) s) ≡⟨ ap flipΣ (map-∘ $ₚ s) ⟩
flipΣ (map θ.to (map (flipΣ ∘ θ.from) s)) ≡⟨ ap (flipΣ ∘ map θ.to) (map-∘ $ₚ s) ⟩
flipΣ (map θ.to (map flipΣ (map θ.from s))) ≡⟨ ap (flipΣ ∘ map θ.to) (rotateΣ $ₚ map θ.from s) ⟩
flipΣ (map θ.to (flipΣ (map θ.from s))) ≡⟨ ap flipΣ (flipΣ-natural (map θ.from s)) ⟩
flipΣ (flipΣ (map θ.to (map θ.from s))) ≡⟨ flipΣ-involutive _ ⟩
map θ.to (map θ.from s) ≡⟨ is-iso.rinv (map-iso (θⁿ⁻¹ n p)) s ⟩
s ∎

θN : (n : Nat) (p : Sⁿ⁻¹ n) θⁿ⁻¹ n p .fst N ≡ p
θN (suc n) = Susp-elim _ refl refl λ p transpose $
ap sym (∙-idl _ ∙ ∙-idl _ ∙ ∙-elimr (∙-idl _ ∙ ∙-idl _ ∙ ∙-idr _ ∙ ∙-idl _ ∙ ∙-idl _ ∙ ∙-idl _))
∙ ap merid (θN n p)

θS : (n : Nat) (p : Sⁿ⁻¹ n) θⁿ⁻¹ n p .fst S ≡ Equiv.to (antipodeⁿ⁻¹ n) p
θS (suc n) = Susp-elim _ refl refl λ p transpose $
ap sym (∙-idl _ ∙ ∙-idl _ ∙ ∙-elimr (∙-idl _ ∙ ∙-idl _ ∙ ∙-idr _ ∙ ∙-idl _ ∙ ∙-idl _ ∙ ∙-idl _))
∙ ap (sym ∘ merid) (θS n p)

cⁿ⁻¹ : (n : Nat) (p : Sⁿ⁻¹ n) Tⁿ⁻¹ n p p ≡ Equiv.to (antipodeⁿ⁻¹ n) p
cⁿ⁻¹ n p t = sym (θN n p) ∙ ap (θⁿ⁻¹ n p .fst) (merid t) ∙ θS n p

even odd : Nat Bool
even zero = true
even (suc n) = odd n
odd zero = false
odd (suc n) = even n

flipΣⁿ : (n : Nat) Sⁿ⁻¹ n Sⁿ⁻¹ n
flipΣⁿ zero = id
flipΣⁿ (suc n) = if even n then flipΣ else id

flipΣⁿ⁺² : (n : Nat) map (map (flipΣⁿ n)) ≡ flipΣⁿ (suc (suc n))
flipΣⁿ⁺² zero = ap map map-id ∙ map-id
flipΣⁿ⁺² (suc n) with even n
... | true = ap map rotateΣ ∙ rotateΣ
... | false = ap map map-id ∙ map-id

antipode≡flip : (n : Nat) Equiv.to (antipodeⁿ⁻¹ n) ≡ flipΣⁿ n
antipode≡flip zero = refl
antipode≡flip (suc zero) = ap (flipΣ ∘_) map-id
antipode≡flip (suc (suc zero)) = -- TODO can i avoid this case?
flipΣ ∘ map (flipΣ ∘ map id) ≡⟨ ap (flipΣ ∘_) map-∘ ⟩
flipΣ ∘ map flipΣ ∘ map (map id) ≡⟨ ap (λ x flipΣ ∘ x ∘ map (map id)) rotateΣ ⟩
flipΣ ∘ flipΣ ∘ map (map id) ≡⟨ funext (λ _ flipΣ-involutive _) ⟩
map (map id) ≡⟨ ap map map-id ⟩
map id ≡⟨ map-id ⟩
id ∎
antipode≡flip (suc (suc (suc n))) =
flipΣ ∘ map (flipΣ ∘ map (antipodeⁿ⁻¹ (suc n) .fst)) ≡⟨ ap (flipΣ ∘_) map-∘ ⟩
flipΣ ∘ map flipΣ ∘ map (map (antipodeⁿ⁻¹ (suc n) .fst)) ≡⟨ ap (λ x flipΣ ∘ x ∘ map (map (antipodeⁿ⁻¹ (suc n) .fst))) rotateΣ ⟩
flipΣ ∘ flipΣ ∘ map (map (antipodeⁿ⁻¹ (suc n) .fst)) ≡⟨ funext (λ _ flipΣ-involutive _) ⟩
map (map (antipodeⁿ⁻¹ (suc n) .fst)) ≡⟨ ap (map ∘ map) (antipode≡flip (suc n)) ⟩
map (map (flipΣⁿ (suc n))) ≡⟨ flipΣⁿ⁺² (suc n) ⟩
flipΣⁿ (suc (suc (suc n))) ∎

hairy-ball : (n : Nat) ((p : Sⁿ⁻¹ n) Tⁿ⁻¹ n p) flipΣⁿ n ≡ id
hairy-ball n sec = sym $ funext (λ p cⁿ⁻¹ n p (sec p)) ∙ antipode≡flip n

-- Showing that this in turn implies that n-1 is odd requires more homotopy theory
-- than I have available: one can use πₙ(Sⁿ) ≃ ℤ to define the degree of a map,
-- which should be -1 for flipΣ and 1 for id.

0 comments on commit 09a7c70

Please sign in to comment.