Skip to content

Commit

Permalink
Merge 02d3ddc into d1d4038
Browse files Browse the repository at this point in the history
  • Loading branch information
marouenbg committed Dec 20, 2022
2 parents d1d4038 + 02d3ddc commit 138774b
Show file tree
Hide file tree
Showing 3 changed files with 331 additions and 11 deletions.
1 change: 1 addition & 0 deletions R/PANDA.R
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
#' @param keep_expression_matrix 'TRUE' keeps the input expression matrix as an attribute in the result Panda object.'FALSE' deletes the expression matrix attribute in the Panda object. The default value is 'FALSE'.
#' @param modeProcess 'legacy' refers to the processing mode in netZooPy<=0.5, 'union': takes the union of all TFs and genes across priors and fills the missing genes in the priors with zeros; 'intersection': intersects the input genes and TFs across priors and removes the missing TFs/genes. Default values is 'union'.
#' @param remove_missing Only when modeProcess='legacy': remove_missing='TRUE' removes all unmatched TF and genes; remove_missing='FALSE' keeps all tf and genes. The default value is 'FALSE'.
#' @param with_header Boolean to read gene expression file with a header for sample names
#'
#' @return When save_memory=FALSE(default), this function will return a list of three items:
#' Use \code{$panda} to access the standard output of PANDA as data frame, which consists of four columns:
Expand Down
306 changes: 306 additions & 0 deletions R/PUMA.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@
#' PANDA using microRNA associations
#'
#' This function runs the PUMA algorithm to predict a miRNA-gene regulatory network
#'
#' @param motif A miRNA target dataset, a data.frame, matrix or exprSet containing 3 columns.
#' Each row describes the association between a miRNA (column 1) its target
#' gene (column 2) and a score (column 3) for the association from TargetScan or miRanda
#' @param expr An expression dataset, as a genes (rows) by samples (columns) data.frame
#' @param ppi This can be set to 1) NULL which will be encoded as an identity matrix between miRNAs in PUMA for now.
#' Or 2) it can include a set of TF interactions, or 3) a mix of TFs and miRNAs.
#' @param alpha value to be used for update variable, alpha (default=0.1)
#' @param mir_file list of miRNA to filter the PPI matrix and prevent update of miRNA edges.
#' @param hamming value at which to terminate the process based on hamming distance (default 10^-3)
#' @param iter sets the maximum number of iterations PUMA can run before exiting.
#' @param progress Boolean to indicate printing of output for algorithm progress.
#' @param output a vector containing which networks to return. Options include "regulatory",
#' "coregulatory", "cooperative".
#' @param zScale Boolean to indicate use of z-scores in output. False will use [0,1] scale.
#' @param randomize method by which to randomize gene expression matrix. Default "None". Must
#' be one of "None", "within.gene", "by.genes". "within.gene" randomization scrambles each row
#' of the gene expression matrix, "by.gene" scrambles gene labels.
#' @param cor.method Correlation method, default is "pearson".
#' @param scale.by.present Boolean to indicate scaling of correlations by percentage of positive samples.
#' @param remove.missing.ppi Boolean to indicate whether miRNAs in the PPI but not in the motif data should be
#' removed. Only when mode=='legacy'.
#' @param remove.missing.motif Boolean to indicate whether genes targeted in the motif data but not the
#' expression data should be removed. Only when mode=='legacy'.
#' @param remove.missing.genes Boolean to indicate whether genes in the expression data but lacking
#' information from the motif prior should be removed. Only when mode=='legacy'.
#' @param edgelist Boolean to indicate if edge lists instead of matrices should be returned.
#' @param mode The data alignment mode. The mode 'union' takes the union of the genes in the expression matrix and the motif
#' and the union of TFs in the ppi and motif and fills the matrics with zeros for nonintersecting TFs and gens, 'intersection'
#' takes the intersection of genes and TFs and removes nonintersecting sets, 'legacy' is the old behavior with version 1.19.3.
#' #' Parameters remove.missing.ppi, remove.missingmotif, remove.missing.genes work only with mode=='legacy'.
#' @keywords keywords
#' @importFrom matrixStats rowSds
#' @importFrom matrixStats colSds
#' @importFrom Biobase assayData
#' @importFrom reshape melt.array
#' @export
#' @return An object of class "panda" containing matrices describing networks achieved by convergence
#' with PUMA algorithm.\cr
#' "regNet" is the regulatory network\cr
#' "coregNet" is the coregulatory network\cr
#' "coopNet" is the cooperative network which is not updated for miRNAs
#' @examples
#' data(pandaToyData)
#' pumaRes <- puma(pandaToyData$motif,
#' pandaToyData$expression,NULL,hamming=.1,progress=TRUE)
#' @references
#' Kuijjer, Marieke L., et al. "PUMA: PANDA using microRNA associations." Bioinformatics 36.18 (2020): 4765-4773.
puma <- function(motif,expr=NULL,ppi=NULL,alpha=0.1,mir_file,hamming=0.001,
iter=NA,output=c('regulatory','coexpression','cooperative'),
zScale=TRUE,progress=FALSE,randomize=c("None", "within.gene", "by.gene"),cor.method="pearson",
scale.by.present=FALSE,edgelist=FALSE,remove.missing.ppi=FALSE,
remove.missing.motif=FALSE,remove.missing.genes=FALSE,mode="union"){

randomize <- match.arg(randomize)
if(progress)
print('Initializing and validating')

if(class(expr)=="ExpressionSet")
expr <- assayData(expr)[["exprs"]]

if (is.null(expr)){
# Use only the motif data here for the gene list
num.conditions <- 0
if (randomize!="None"){
warning("Randomization ignored because gene expression is not used.")
randomize <- "None"
}
} else {
if(mode=='legacy'){
if(remove.missing.genes){
# remove genes from expression data that are not in the motif data
n <- nrow(expr)
expr <- expr[which(rownames(expr)%in%motif[,2]),]
message(sprintf("%s genes removed that were not present in motif", n-nrow(expr)))
}
if(remove.missing.motif){
# remove genes from motif data that are not in the expression data
n <- nrow(motif)
motif <- motif[which(motif[,2]%in%rownames(expr)),]
message(sprintf("%s motif edges removed that targeted genes missing in expression data", n-nrow(motif)))
}
# Use the motif data AND the expr data (if provided) for the gene list
# Keep everything sorted alphabetically
expr <- expr[order(rownames(expr)),]
}else if(mode=='union'){
gene.names=unique(union(rownames(expr),unique(motif[,2])))
tf.names =unique(union(unique(ppi[,1]),unique(motif[,1])))
num.TFs <- length(tf.names)
num.genes <- length(gene.names)
# gene expression matrix
expr1=as.data.frame(matrix(0,num.genes,ncol(expr)))
rownames(expr1)=gene.names
expr1[which(gene.names%in%rownames(expr)),]=expr[]
expr=expr1
#PPI matrix
tfCoopNetwork <- matrix(0,num.TFs,num.TFs)
colnames(tfCoopNetwork)=tf.names
rownames(tfCoopNetwork)=tf.names
Idx1 <- match(ppi[,1], tf.names);
Idx2 <- match(ppi[,2], tf.names);
Idx <- (Idx2-1)*num.TFs+Idx1;
tfCoopNetwork[Idx] <- ppi[,3];
Idx <- (Idx1-1)*num.TFs+Idx2;
tfCoopNetwork[Idx] <- ppi[,3];
#Motif matrix
regulatoryNetwork=matrix(0,num.TFs,num.genes)
colnames(regulatoryNetwork)=gene.names
rownames(regulatoryNetwork)=tf.names
Idx1=match(motif[,1], tf.names);
Idx2=match(motif[,2], gene.names);
Idx=(Idx2-1)*num.TFs+Idx1;
regulatoryNetwork[Idx]=motif[,3]
}else if(mode=='intersection'){
gene.names=unique(intersect(rownames(expr),unique(motif[,2])))
tf.names =unique(intersect(unique(ppi[,1]),unique(motif[,1])))
num.TFs <- length(tf.names)
num.genes <- length(gene.names)
# gene expression matrix
expr1=as.data.frame(matrix(0,num.genes,ncol(expr)))
rownames(expr1)=gene.names
interGeneNames=gene.names[which(gene.names%in%rownames(expr))]
expr1[interGeneNames,]=expr[interGeneNames,]
expr=expr1
#PPI matrix
tfCoopNetwork <- matrix(0,num.TFs,num.TFs)
colnames(tfCoopNetwork)=tf.names
rownames(tfCoopNetwork)=tf.names
Idx1 <- match(ppi[,1], tf.names);
Idx2 <- match(ppi[,2], tf.names);
Idx <- (Idx2-1)*num.TFs+Idx1;
indIdx=!is.na(Idx)
Idx=Idx[indIdx] #remove missing miRNAs
tfCoopNetwork[Idx] <- ppi[indIdx,3];
Idx <- (Idx1-1)*num.TFs+Idx2;
indIdx=!is.na(Idx)
Idx=Idx[indIdx] #remove missing miRNAs
tfCoopNetwork[Idx] <- ppi[indIdx,3];
#Motif matrix
regulatoryNetwork=matrix(0,num.TFs,num.genes)
colnames(regulatoryNetwork)=gene.names
rownames(regulatoryNetwork)=tf.names
Idx1=match(motif[,1], tf.names);
Idx2=match(motif[,2], gene.names);
Idx=(Idx2-1)*num.TFs+Idx1;
indIdx=!is.na(Idx)
Idx=Idx[indIdx] #remove missing genes
regulatoryNetwork[Idx]=motif[indIdx,3];
}
num.conditions <- ncol(expr)
if (randomize=='within.gene'){
expr <- t(apply(expr, 1, sample))
if(progress)
print("Randomizing by reordering each gene's expression")
} else if (randomize=='by.gene'){
rownames(expr) <- sample(rownames(expr))
expr <- expr[order(rownames(expr)),]
if(progress)
print("Randomizing by reordering each gene labels")
}
}

if (mode=='legacy'){
# Create vectors for TF names and Gene names from motif dataset
tf.names <- sort(unique(motif[,1]))
gene.names <- sort(unique(rownames(expr)))
num.TFs <- length(tf.names)
num.genes <- length(gene.names)
}

# Bad data checking
if (num.genes==0){
stop("Error validating data. No matched genes.\n Please ensure that gene names in expression data match gene names in motif data")
}

if(num.conditions==0) {
warning('No expression data given. PUMA will run based on an identity co-regulation matrix')
geneCoreg <- diag(num.genes)
} else if(num.conditions<3) {
warning('Not enough expression conditions detected to calculate correlation. Co-regulation network will be initialized to an identity matrix.')
geneCoreg <- diag(num.genes)
} else {

if(scale.by.present){
num.positive=(expr>0)%*%t((expr>0))
geneCoreg <- cor(t(expr), method=cor.method, use="pairwise.complete.obs")*(num.positive/num.conditions)
} else {
geneCoreg <- cor(t(expr), method=cor.method, use="pairwise.complete.obs")
}
if(progress)
print('Verified sufficient samples')
}
if (any(is.na(geneCoreg))){ #check for NA and replace them by zero
diag(geneCoreg)=1
geneCoreg[is.na(geneCoreg)]=0
}

if (any(duplicated(motif))) {
warning("Duplicate edges have been found in the motif data. Weights will be summed.")
motif <- aggregate(motif[,3], by=list(motif[,1], motif[,2]), FUN=sum)
}

# Prior Regulatory Network
if(mode=='legacy'){
Idx1=match(motif[,1], tf.names);
Idx2=match(motif[,2], gene.names);
Idx=(Idx2-1)*num.TFs+Idx1;
regulatoryNetwork=matrix(data=0, num.TFs, num.genes);
regulatoryNetwork[Idx]=motif[,3]
colnames(regulatoryNetwork) <- gene.names
rownames(regulatoryNetwork) <- tf.names
# PPI data
# If no ppi data is given, we use the identity matrix
tfCoopNetwork <- diag(num.TFs)
# Else we convert our two-column data.frame to a matrix
if (!is.null(ppi)){
if(any(duplicated(ppi))){
warning("Duplicate edges have been found in the PPI data. Weights will be summed.")
ppi <- aggregate(ppi[,3], by=list(ppi[,1], ppi[,2]), FUN=sum)
}
if(remove.missing.ppi){
# remove edges in the PPI data that target TFs not in the motif
n <- nrow(ppi)
ppi <- ppi[which(ppi[,1]%in%tf.names & ppi[,2]%in%tf.names),]
message(sprintf("%s PPI edges removed that were not present in motif", n-nrow(ppi)))
}
Idx1 <- match(ppi[,1], tf.names);
Idx2 <- match(ppi[,2], tf.names);
Idx <- (Idx2-1)*num.TFs+Idx1;
tfCoopNetwork[Idx] <- ppi[,3];
Idx <- (Idx1-1)*num.TFs+Idx2;
tfCoopNetwork[Idx] <- ppi[,3];
}
colnames(tfCoopNetwork) <- tf.names
rownames(tfCoopNetwork) <- tf.names
}

if(mir_file != NULL){
mirIndex = match(mir_file,tf.names)
tfCoopNetwork[mirIndex,] = 0
tfCoopNetwork[,mirIndex] = 0
seqs = seq(1, num.tfs*num.tfs, num.tfs+1)
tfCoopNetwork[seqs] <- 1
# tfCoopNetwork has now a diagonal of 1 and all entries are zeros
# for miRNA-miRNA interactions and TF-miRNA interactions
}
## Run PUMA ##
tic=proc.time()[3]

if(progress)
print('Normalizing networks...')
regulatoryNetwork = normalizeNetwork(regulatoryNetwork)
tfCoopNetwork = normalizeNetwork(tfCoopNetwork)
geneCoreg = normalizeNetwork(geneCoreg)

if(progress)
print('Learning Network...')

minusAlpha = 1-alpha
step=0
hamming_cur=1
if(progress)
print("Using tanimoto similarity")

TFCoopInit = tfCoopNetwork # Save normalized cooperativity network

while(hamming_cur>hamming){
if ((!is.na(iter))&&step>=iter){
print(paste("Reached maximum iterations, iter =",iter),sep="")
break
}
Responsibility=tanimoto(tfCoopNetwork, regulatoryNetwork)
Availability=tanimoto(regulatoryNetwork, geneCoreg)
RA = 0.5*(Responsibility+Availability)

hamming_cur=sum(abs(regulatoryNetwork-RA))/(num.TFs*num.genes)
regulatoryNetwork=minusAlpha*regulatoryNetwork + alpha*RA

ppi=tanimoto(regulatoryNetwork, t(regulatoryNetwork))
ppi=update.diagonal(ppi, num.TFs, alpha, step)
tfCoopNetwork=minusAlpha*tfCoopNetwork + alpha*ppi

CoReg2=tanimoto(t(regulatoryNetwork), regulatoryNetwork)
CoReg2=update.diagonal(CoReg2, num.genes, alpha, step)
geneCoreg=minusAlpha*geneCoreg + alpha*CoReg2

#PUMA step to skip update of PPI matrix for miRNA interactions
seqs = seq(1, num.tfs*num.tfs, num.tfs+1)
savediag = tfCoopNetwork[seqs] # save diagonal
tfCoopNetwork[mirIndex,] <- TFCoopInit[mirIndex,]
tfCoopNetwork[,mirIndex] <- TFCoopInit[,mirIndex]
tfCoopNetwork[seqs] <- savediag # put back saved diagonal

if(progress)
message("Iteration", step,": hamming distance =", round(hamming_cur,5))
step=step+1
}

toc=proc.time()[3] - tic
if(progress)
message("Successfully ran PUMA on ", num.genes, " Genes and ", num.TFs, " miRNAs.\nTime elapsed:", round(toc,2), "seconds.")
prepResult(zScale, output, regulatoryNetwork, geneCoreg, tfCoopNetwork, edgelist, motif)
}
Loading

0 comments on commit 138774b

Please sign in to comment.