Skip to content

netsiphd/netrd

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
doc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DOI PyPI version ReadTheDocs CI

netrd: A library for network {reconstruction, distances, dynamics}

This library provides a consistent, NetworkX-based interface to various utilities for graph distances, graph reconstruction from time series data, and simulated dynamics on networks.

Some resources that maybe of interest:

Installation

netrd is easy to install through pip:

pip install netrd

If you are thinking about contributing to netrd, you can install a development version by executing

git clone https://github.com/netsiphd/netrd
cd netrd
pip install .

Usage

Reconstructing a graph

example reconstruction

The basic usage of a graph reconstruction algorithm is as follows:

from netrd.reconstruction import CorrelationMatrix
import numpy as np
# 100 nodes, 1000 observations
TS = np.random.random((100, 1000))

reconstructor = CorrelationMatrix()
G = reconstructor.fit(TS, threshold_type='degree', avg_k=15)
# or alternately, G = reconstructor.results['graph']

Here, TS is an N x L numpy array consisting of L observations for each of N sensors. This constrains the graphs to have integer-valued nodes.

The results dict object, in addition to containing the graph object, may also contain objects created as a side effect of reconstructing the network, which may be useful for debugging or considering goodness of fit. What is returned will vary between reconstruction algorithms.

Many reconstruction algorithms create a dense matrix of weights and use additional parameters to describe how to create a sparse graph; the tutorial has more details on these parameters.

Distances between graphs

example distance

The basic usage of a distance algorithm is as follows:

from netrd.distance import QuantumJSD
import networkx as nx
G1 = nx.fast_gnp_random_graph(1000, .1)
G2 = nx.fast_gnp_random_graph(1000, .1)

dist_obj = QuantumJSD()
distance = dist_obj.dist(G1, G2)
# or alternatively: distance = dist_obj.results['dist']

Here, G1 and G2 are nx.Graph objects (or subclasses such as nx.DiGraph). The results dictionary holds the distance value, as well as any other values that were computed as a side effect.

Dynamics on graphs

example distance

The basic usage of a dynamics algorithm is as follows:

from netrd.dynamics import VoterModel
import networkx as nx
ground_truth = nx.karate_club_graph()

dynamics_model = VoterModel()
synthetic_TS = dynamics_model.simulate(ground_truth, 1000)
# this is the same structure as the input data to a reconstructor
# G = CorrelationMatrix().fit(synthetic_TS)

This produces a numpy array of time series data.

Contributing

Contributing guidelines can be found in CONTRIBUTING.md.

Publications

  • McCabe, S., Torres, L., LaRock, T., Haque, S. A., Yang, C.-H., Hartle, H., and Klein, B. (2021). netrd: A library for network reconstruction and graph distances. Journal of Open Source Software 6(62): 2990. doi: 10.21105/joss.02990. arXiv: 2010.16019.

    • paper detailing the methods used in this package
  • Hartle H., Klein B., McCabe S., Daniels A., St-Onge G., Murphy C., and Hébert-Dufresne L. (2020). Network comparison and the within-ensemble graph distance. Proceedings of the Royal Society A 476: 20190744. doi: 10.1098/rspa.2019.0744. arXiv: 2008.02415.

    • recent work introducing a baseline measure for comparing graph distances