Statistics and Machine Learning in Python
Jupyter Notebook Python R Makefile
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
.circleci
R
bin
data_manipulation
datasets
images
ml_resampling
ml_sklearn
ml_supervised
ml_unsupervised
python
python_lang
rst
statistics
time_series
visualization
.gitignore
AUTHORS.rst
LICENSE
Makefile
README.md
conf.py
index.rst
info.rst

README.md

Statistics and Machine Learning in Python

This is a draft version !!

Structure

Courses are available in three formats:

  1. Jupyter notebooks.

  2. Python files using sphinx-gallery.

  3. ReStructuredText files.

All notebooks and python files are converted into rst format and then assembled together using sphinx.

Build

After pulling the repository execute Jupyter notebooks (outputs are expected to be removed before git submission).

make exe

Build the pdf file (requires LaTeX):

make pdf

Build the html files:

make html

Dependencies

The easier is to install Anaconda at https://www.continuum.io with python >= 3. Anaconda provides

  • python 3
  • ipython
  • Jupyter
  • pandoc
  • LaTeX to generate pdf

Then install:

  1. sphinx-gallery
pip install sphinx-gallery
  1. nbstripout
conda install -c conda-forge nbstripout

Configure your git repository with nbstripout pre-commit hook for users who don't want to track output in VCS.

cd pystatsml
nbstripout --install
  1. LaTeX (optional for pdf)

For Linux debian like:

sudo apt-get install latexmk texlive-latex-extra